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ABSTRACT: Scanning transmission electron microscopy tomog-
raphy with ChromEM staining (ChromSTEM), has allowed for
the three-dimensional study of genome organization. By leveraging
convolutional neural networks and molecular dynamics simu-
lations, we have developed a denoising autoencoder (DAE)
capable of postprocessing experimental ChromSTEM images to
provide nucleosome-level resolution. Our DAE is trained on
synthetic images generated from simulations of the chromatin fiber
using the 1-cylinder per nucleosome (1CPN) model of chromatin. We find that our DAE is capable of removing noise commonly
found in high-angle annular dark field (HAADF) STEM experiments and is able to learn structural features driven by the physics of
chromatin folding. The DAE outperforms other well-known denoising algorithms without degradation of structural features and
permits the resolution of α-tetrahedron tetranucleosome motifs that induce local chromatin compaction and mediate DNA
accessibility. Notably, we find no evidence for the 30 nm fiber, which has been suggested to serve as the higher-order structure of the
chromatin fiber. This approach provides high-resolution STEM images that allow for the resolution of single nucleosomes and
organized domains within chromatin dense regions comprising of folding motifs that modulate the accessibility of DNA to external
biological machinery.

■ INTRODUCTION
Chromatin is the highly organized complex of DNA, RNA, and
proteins that packages DNA within the cell nucleus, prevents
DNA damage, and controls replication and gene expression.1

The main organizational unit of chromatin is the nucleosome
core particle constituting a complex of DNA wrapped around a
histone octomer.2 Structurally, the nucleosome is approx-
imately 146 base pairs (bps) of DNA wrapped in 1.67 left-
handed superhelical turns around two copies of the H2A, H2B,
H3, and H4 proteins. Chromosomes can contain hundreds of
thousands of nucleosomes linked by short strands of DNA,
which give it the appearance of beads on a string. The structure
of these 11 nm wide nucleosomal disks is nearly conserved
across all eukaryotic cells and serves as the repeating building
block of chromatin.3 Beyond this basic structural unit,
chromatin is believed to have several hierarchical levels of
DNA packaging, beginning with a 10 nm fiber that further
compacts into a 30 nm fiber, the latter of which has been
considered to be a key intermediate level of chromatin
organization and compaction within the eukaryotic nucleus.4

The structure of the 30 nm fiber is characterized as a
nucleosomal chain folding into a solenoid or a “one-start”
helical structure. Each nucleosome in this configuration
interacts with its fifth and sixth surrounding nucleosomes as
the nucleosomes coil around a central cavity at a rate of about

six nucleosomes per turn.5 Though first observed under an
electron microscope in vitro, the relevance of the 30 nm fiber in
vivo remains an open question.4,6,7 More recently, studies have
suggested nucleosomes can arrange themselves into stable
secondary structural arrays comprised of four nucleosomes that
play an important regulatory function by controlling the
accessibility of DNA to external biological machinery.8−11

While these tetranucleosomes have been observed in
reconstituted chromatin fibers in vitro and suggested by
modeling studies in silico, current imaging techniques remain
insufficient to resolve their existence in situ.12

Recently, chromatin staining coupled with electron and
scanning transmission electron microscopy (ChromEM and
ChromSTEM, respectively) have resolved the 3D organization
of chromatin and observed distinct, anisotropic packing
domains.13,14 The size and variability of these domains across
different cell type have been suggested to regulate gene activity
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by controlling the size of macromolecular complexes that can
access DNA within these clusters, thereby affecting processes
such as DNA transcription, replication, and repair. In addition,
variability in statistical and morphological properties of packing
domains may potentially play an important role in the
construction of higher-order chromatin structures such as
euchromatin and heterochromatin.15 While these experimental
imaging techniques have provided key insights into the
chromatin structure, nucleosome-level packing remains
obscured by statistical noise inherent to STEM imaging.12,16

In particular, the spatial organization of nucleosomes within
dense chromatin regions suffers from low signal-to-noise ratios
at these smaller length scales. Denoising STEM images
provides a means to identify folding motifs and advance
understanding of the details of chromatin structure,
nucleosome packing, and the structure−function relation.

By combining the advances made in STEM imaging for
chromatin, molecular dynamics simulations, and machine
learning, we designed a deep convolutional denoising
autoencoder (DAE) for STEM image denoising. Since
noiseless experimental images upon which to train our
denoising models are not available, we instead generate
noise-free training data using by molecular dynamics (MD)
simulations. This strategy is similar to the approach employed
by Ziatdinov et al. in studying the surface of molecular
structures.17 We conduct simulations of the chromatin fiber
using the 1-cylinder per nucleosome (1CPN) model that has
been shown to accurately reflect the possible conformations of
oligonucleosomal structures.11,18,19 Snapshots from these MD
trajectories are then converted to synthetic ChromSTEM
image data sets which are used to train the DAE to remove
noise artificially added to the training images and produce
images with enhanced structural resolution that enable the
identification and analysis of folding motifs within dense DNA
regions. The DAE outperforms other well-known denoising
algorithms and, as we demonstrate in applications of the
trained model to experimental ChromSTEM images, resolves
specific tetranucleosome motifs that induce local chromatin

compaction and are known to mediate DNA accessibility.
Notably, we find no evidence for the 30 nm fiber, which has
been suggested to serve as the higher-order structure of the
chromatin fiber.20,21 Our machine-learning-enabled DAE
presents a means to bridge experimental ChromSTEM imaging
and physics-based molecular dynamics simulations to realize
high-resolution, denoised images capable of resolving pre-
viously unidentifiable tetranucleosome motifs to advance the
understanding of the small-scale organization of chromatin and
the relationship of structure to function.

■ METHODS
Coarse-Grained Molecular Dynamics Simulations and

Generation of Synthetic STEM Data. We train our DAE on
tomographic images generated from MD simulations of the
chromatin fiber (Figure 1). To generate a synthetic data set,
coarse-grained molecular dynamics simulations were carried
out using the 1-cylinder per nucleosome (1CPN) model of
chromatin.18 The 1CPN model is parametrized by explicit
experimental measurements and atomistic models of DNA that
preserve molecular-level nucleosome physics enabling kilobase-
scale simulations of genomic DNA. The 1CPN model is an
appropriate choice, since it has been extensively validated in
the literature as a reliable model for capturing chromatin
dynamics.18 The model was fitted against experimental data
and has demonstrated its ability to reproduce a wide range of
chromatin processes that include nucleosome unwrapping,
sedimentation coefficients, and interactions between nucleo-
somes, which is a primary mechanism that drives chromatin
folding.11,19

We conducted the 1CPN simulations under conditions
representative of those under which the ChromSTEM images
were acquired. As anticipated, the 30 nm fiber was not
observed within in our simulations, as the conditions that
typically involve its formation are due to specific in vitro
environmental conditions such as the inclusion of high-affinity
601 DNA repeats and a cationic environment (e.g., 1−2 mM
Mg2+).22 Furthermore, cryo-EM images of the 30 nm fiber

Figure 1. A denoising autoencoder (DAE) is constructed and trained on simulations of the chromatin fiber. We simulate nucleosome arrangements
using the 1CPN model of chromatin and use the resulting trajectories to generate synthethic STEM images by superimposing crystal structures of
the nucleosome (PDB: 1KX5) and DNA snippets. Noise commonly found in angle annular dark field (HAADF) STEM experiments is applied to
the images and the DAE trained to remove this noise and preserve the underlying signal.
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have not been reported for mitotic chromosomes in vivo.21 We
note, however, that our pipeline is designed to be easily
adaptable to new conditions and that transfer learning could be
used to augment the existing model by repeating the
simulations under the conditions under which the new
experimental data were gathered and retraining the DAE.

After equilibration, three 30 μs replicas were conducted
totaling 150 μs of simulation time of chromatin fibers varying
from 150 to 200 nucleosome repeat lengths (NRLs) and
comprised of 4−16 nucleosomes. The lengths and sizes were
chosen to account for the natural variability in biological
systems. We highlight that our simulations cover long time
scales that have not been reached by previous studies. This
extended simulation time allows for a more comprehensive
exploration of the phase space and reduces the risk of being
trapped in certain emergy minima. The 1CPN model’s
effectiveness in representing chromatin behavior helps to
ensure that our simulation snapshots are representative of the
physical system under study. The combination of long-time-
scale simulations and the use of the 1CPN model provides a
strong foundation for generating a diverse and representative
training data set for our denoising autoencoder. We performed
an internal consistency verification that the 150 μs simulations
of each system were sufficiently long to comprehensively probe
the relevant configurational phase space by verifying that the
phase space ensemble visited by the first 75 μs and second 75
μs produced similar distributions in key structural order
parameters such as radius of gyration and root-mean-square
deviation in reference to the initial elongated fiber structure.

Approximately 16000 snapshots from all simulation
trajectories were extracted at 28 × 28 pixel resolution. These
synthetic images represent a variety of conformations of the
chromatin fiber at a resolution commensurate with that of
typical ChromSTEM imaging experiments.14,15 From this data
set, 12702 conformations were selected for training and 3176
held out as a validation set. An X-ray crystal structure of the
nucleosome core particle at 1.9 Å resolution (PDB: 1KX5) was
superimposed to the location of each nucleosome bead and
linker DNA was built with repeating ATAT bases.23 Each
structure was converted to a point cloud representation and
then voxelized to resemble a high-angle annular dark-field
scanning transmission electron microscope (HAADF-STEM)
tomogram. Each synthetic image stack contained 28 × 28 × 9
voxels with a voxel dimension of approximately 3 × 3 × 3 nm3

corresponding to the approximate 27 nm3 volume captured in
an experimental STEM voxel. Mathematically, the voxel
intensity, Im,n, is given by the total number of atoms that are
enclosed within the volume of a voxel unit, Vm,n

= [ ]
=

I x x V( )m n
i

N

i m n,
1

,
(1)

where the position of a given atom is given by xi, and m and n
denote the row and column indices of a voxel within a 28 × 28
× 1 voxel 2D planar slice, I, of the 3D voxel stack and where
we have used Iverson’s bracket notation to denote the
indicator function. Finally, the synthetic image intensity is
normalized to match the distribution of voxel intensity in
experimental tomograms.24−26

HAADF-STEM has emerged as a powerful imaging
technique that provides nanoscale-level structural detail.27,28

It is, however, sensitive to environmental and instrumental
noise during image acquisition that introduces extraneous

signals not associated with the scattering of the sample.16,29,30

For example, images are acquired at different projection angles
by tilting the sample stage, at high tilt angles; however,
focusing becomes more difficult, which leads to image
blurring.31 In addition, limited beam penetration and focal
depth coupled with the restricted tilt range results in a lower
set of projections which also introduces artifacts (i.e., “missing
cone” artifacts).32,33 Beam damage and environmental noise
(e.g., airflow, sound, temperature, etc.) also deteriorate image
quality and limit the accuracy of HAADF-STEM tomographic
reconstruction.16,29,34 Due to the particle nature of electrons
and the collection method, Poisson noise remains the
dominant form of noise in STEM imaging.16,35 To account
for these effects within our simulated data, we apply several
HAADF-STEM-related noise conditions including Gaussian
noise, Poisson noise, and tip-blurring effects to each simulated
image similar to the approach implemented by Schwenker et
al.24−26 Parameters such as broadening effects, counts, and
additive background noise were adjusted to account for the
different levels of noise that may be encountered during image
acquisition. Mathematically, each noise-free image, I, generated
from the MD simulations is converted into an artificially noisy
image, I,̃ by corrupting it with articial noise under the noise
model

= + + +I I I I IPoisson Gaussian Scan (2)

Given that Poisson noise is not additive and correlated with
voxel intensity, we instead begin by applying a signal-
dependent Poisson noise layer on top of each noise-free
image using the discrete probability distribution

= =
!

I N k
e

k
Pr( )

k

Poisson (3)

where N represents the number of photons measured by a
given sensor and λ is the expected number of photos per unit
time interval. We make the assumption that the number of
atoms counted in a given voxel unit (Im,n) is similar to photon
counting in a classic Poisson process.

STEM images are susceptible to thermal vibrations and
electronic noise which can be modeled as a Gaussian process.36

To account for this, we add a Gaussian noise layer that obeys
the distribution

=I N e( , )
1

2
z

Gaussian
2

2
( ) /22 2

(4)

where μ is equal to the mean of the image and σ is the standard
deviation which represents the broadening (i.e., “spread”) of
the signal. Similar to the approach by Schwenker et al. to
emulate noise and distortion conditions common to the
HAADF-STEM imaging mode, we set σ = 0.8.24−26

Finally, scan line shifts, IScan, are random, persistent, time-
dependent distortions that occur due to positioning errors of
the electron beam that result in shifts in the image
perpendicular to the scan lines.37 We generated this type of
noise by introducing approximately a 1 subpixel offset
randomly along the x direction and resampling these random
shifts via bilinear interpolation

=I I I u u( , )u u m n x yScan , ,x y (5)

where ux and uy are the desired shifts across the range [−1, 1).
Denoising Autoencoder (DAE) Architecture. As the

name suggests, denoising autoencoders (DAEs) are artificial
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neural networks designed to remove noise from an input
signal, frequently images.38 A typical autoencoder is comprised
of two distinct components: an encoder and decoder. The
encoder compresses a high-dimensional image into a low-
dimensional representation. These representations are called
latent representations or encodings which the decoder uses to
reconstruct the original input image. During training, the DAE
is provided with training images that have been artificially
corrupted with noise generated by a model representative of
the noise expected to be encountered in the particular
application domain. A loss function is applied that minimizes
the difference between the reconstructed image and the
original noise-free image. Intuitively, the training process
teaches the DAE to learn a latent space representation that
filters out the noise while preserving the underlying signal
within the training data and permits the decoder to reconstruct
denoised images.39 The trained DAE model may then be
applied to noisy images outside of the training data for which
the ground truth is unknown to predictively reconstruct
denoised images. The success and generalizability of the
trained model are contingent on the training images and noise
model being sufficiently representative of the new images to
which it is applied, and it is good practice to perform post hoc
checks that the model has not introduced artifacts or been
applied outside of its domain of applicability.

We employ a fully convolutional DAE architecture that
permits variable input image sizes to allow for potential

variability in training and experimental image sizes.41 Training
and validation sets of 12702 and 3176 images (80/20 random
split), respectively, with 28 × 28 dimensions at a batch size of
32 were used for training and validation (Figure 2). We guard
against overfitting by employing early stopping based on the
validation error on a 20% randomly sampled hold-out
validation partition. These images were harvested from the
1CPN MD simulations and contain a diversity of conforma-
tions of chromatin fibers at a resolution commensurate with
that of a typical ChromSTEM imaging experiment. We use a
convolution layer of kernel size (3,3) with 256 output filters
and stride 1 employing ReLU activation functions and
followed by a max pooling layer of pool size (2,2). We follow
this with a second ReLU convolutional layer of kernel size
(3,3), 128 output filters, and stride 1 followed by a max
pooling layer of pool size (2,2), and finally a third ReLU
convolutional layer of kernel size (3,3), 64 output filters, and
stride 1 followed by a max pooling layer of pool size (2,2). The
output of the third convolutional layer produces a low-
dimensional latent space embedding of the image that serves as
an information bottleneck designed to preserve the image
signal and reject noise. The decoder architecture mirrors the
encoder structure, employing three convolutional upsampling
layers used to rebuild images to their original dimension. Our
network employs a fully convolutional architecture that does
not use any fully connected layers and enables its deployment
on images of arbitrary size. Given that images comprise single

Figure 2. A denoising autoencoder (DAE) comprises an encoder that compresses the noisy image into a low-dimensional latent space embedding
and a decoder that decompresses this embedding into a denoised image. The latent space presents an information bottleneck that the trained DAE
model uses to reject noise and preserve signal, enabling reconstruction of denoised images. The DAE is trained on noise-free images for which the
ground truth is known and which are artificially corrupted by noise under a noise model representative of the intended application domain for the
trained DAE. The image illustrates a DAE that performs an encoding of a 28 × 28 pixel grayscale (i.e., single channel) image into a 64-channel 8 ×
8 latent space embedding under three convolution plus max pooling layers, followed by decoding under three convolutional plus upsampling layers
to generate a denoised 28 × 28 pixel image.40
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channel grayscale pixels with intensities normalized between
[0,1], the binary cross-entropy (BCE) loss function is used

= +
=

y y y yBCE
1

output
log (1 ) log(1 )

i
i i i i

size 1

output size

(6)

where ŷi is the output prediction and yi is the corresponding
target value. It has been shown that when training
autoencoders on image data, minimizing the BCE loss function
facilitates gradient steps in data space from low- to high-
probability regions under the data-generation distribution.42

We constructed and trained our DAE in TensorFlow using
Keras.43 Training took ∼3 min per epoch on an AMD Ryzen 9
3950X 16-core CPU and Nvidia RTX 3090 GPU card.
Training was performed using the Adam algorithm with a
learning rate of 1 × 10−3.44 We guard against overfitting by
employing early stopping based on the validation error on a
20% randomly sampled hold-out validation partition. We
explored architectures employing 3−6 convolutional layers,
first layer filters ranging from 2 × 2 to 5 × 5, and latent spaces
bottlenecks ranging from 2 × 2 × 12 to 16 × 16 × 128 but
found our result to be relatively insensitive to the precise
choice of architecture. The source code for our DAE and
training/validation data are available at https://github.com/
Ferg-Lab/ChromSTEM-Denoising-Autoencoder.

Denoising Performance. Denoising performance was
measured using mean-square error (MSE), peak signal-to-
noise ratio (PSNR), and structural similarity index
(SSIM).45,46 Mean-square error is the total squared error
between pixel intensity differences of the original noise-free
image, I, and denoised image, I,̂ defined as

=
[ ]= = I I

MN
MSE m

M
n
N

m n m n1 1 , ,
2

(7)

where M and N are the number of rows and columns in the
image and M = N = 28 for our training data. The lower the
MSE value, the lower the error. Similarly, PSNR measures the
quality of reconstruction of lossy compression by measuring
the peak error and is calculated as

=
i
k
jjjj

y
{
zzzzR

PSNR 10 log
MSE10

2

(8)

where R is the maximum possible pixel value and typically
depends on the bit depth of an image (e.g., for 8-bit images R =
255).47 For PSNR, the higher the value, the better the
reconstruction.

Whereas MSE and PSNR calculate absolute errors between
pixels, the SSIM index considers degradation as the change of
perception in structural information by taking into account
three key features: luminance, contrast, and structure. An SSIM
value can range from −1, indicating images are structurally
different, to +1, indicating they are either the same or very
similar, and is defined as

= [ ] × [ ] × [ ]x y l x y c x y s x ySSIM( , ) ( , ) ( , ) ( , ) (9)

where

=
+

+ +
l x y

C

C
( , )

2 x y

x y

1
2 2

1 (10)

=
+

+ +
c x y

C

C
( , )

2 x y

x y

2
2 2

2 (11)

=
+
+

s x y
C

C
( , )

xy

x y

3

3 (12)

The functions l(x,y), c(x,y), and s(x,y) compare luminance,
contrast, and structure between two images x and y, where here
we set x = I and y = I ̂ for our ground-truth and denoised
images, respectively.47 The variables μx and μy are their
respective local means over all pixel values and represent the
luminance of each images. Contrast is measured by taking the
standard deviation σx and σy of all pixel values, and σxy is the
cross-covariance of the images. The variables α, β, and γ adjust
the relative importance of each feature and are typically set to
unity. The constants Ci = (KiL)2 prevent functions from
becoming undefined, where L accounts for pixel value range
and is set to unity given that our images are normalized in the
range of [0,1]. By convention, we adopt C3 = C2/2 and set K1
= 0.01 and K2 = 0.03.45

Denoising performance metrics such as MSE, PSNR, and
SSIM are calculated between a ground-truth image (i.e., noise-
free image), I, and its denoised counterpart, I,̂ produced by the
DAE from the artificially noisy image I.̃ Given that noise-free
ChromSTEM images do not exist to serve as a ground-truth
comparison, we rely on power spectral density (PSD) plots to
compare raw and denoised experimental image sets. PSD
represents the total signal power contributed across the
frequency domain of a signal. For images, it measures the
strength of the features at different resolutions. This allows for
comparison of morphological features and noise in the low-
and high-wavelength domains, respectively. We compute the
PSD by taking the discrete Fourier transform (DFT) of each
image which allows for the decomposition of resolutions

{ } { }=
= =

F k l I i mk
M

i nl
N

( , ) exp 2 exp 2
m

M

n

N

m n
0

1

0

1

,

(13)

where Im,n is a representation of the image in the spatial
domain corresponding to the grayscale intensity of the pixel at
row (m) and column (n) coordinates, F(k, l) is the
representation of the image in the Fourier domain correspond-
ing to the Fourier component at discrete row-wise and
column-wise “frequencies” k/M and l/N, and k = 0, ..., (M − 1)
and l = 0, ..., (N − 1).48,49 Since we only consider square
images for which M = N, we simplify this expression to
equalize the row and column frequency components by setting
k = l so that

{ }=
=

F k I i mk
M

( ) exp 4
m

M

m n
0

1

,
(14)

The PSD follows from the modulus of the DFT as P(k) = |
F(k)|.

ChromSTEM Sample Preparation, Imaging, and
Reconstruction for A549 Cell Nucleus. Adenocarcinoma
human lung epithelial cell line A549 (ATCC Manassas, VA)
was cultured in Dulbecco’s Modified Eagle Medium (Thermo-
Fisher Scientific, Waltham, MA, #11965092) and maintained
at 5% CO2 and 37 °C. All culture media were supplemented
with 10% fetal bovine serum (Thermo Fisher Scientific,
Waltham, MA; #16000044) and penicillin−streptomycin (100
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μg/mL; Thermo Fisher Scientific, Waltham, MA; #15140122).
The cell line was tested for mycoplasma contamination with
Hoechst 33342. Cells were seeded on 35 mm glass-bottom
Petri dishes (MatTek Corp.) until approximately 40−50%
confluent and were given at least 24 h to adhere to the dish
before fixation.

For ChromSTEM sample preparation, the previously
published protocol was adapted.13 A549 cells cultured on the
glass-bottom dishes were thoroughly rinsed three times in
Hank’s balanced salt solution without calcium and magnesium
(EMS). A fixation solution (2.5% EM grade glutaraldehyde, 2%
paraformaldehyde, 2 mM CaCl2 in 0.1 M sodium cacodylate
buffer, pH = 7.4) was prepared. Cells were then fixed at room
temperature for 5 min and then replaced with fresh fixative and
fixed on ice for 1 h. All the succeeding steps, unless mentioned
otherwise, were performed on ice. After fixation, the cells were
then washed with 0.1 M sodium cacodylate buffer five times on
the ice. The samples were incubated in a blocking buffer (10
mM glycine, 10 mM potassium cyanide in 0.1 M sodium
cacodylate buffer, pH = 7.4) for 15 min. Next, the samples
were stained with 10 μM DRAQ5 (Thermo Fisher) and 0.1%
saponin solution in 0.1 M sodium cacodylate buffer, pH = 7.4
for 10 min. The cells were washed with a blocking buffer twice,
and then incubated in the blocking buffer on ice before
photobleaching. The blocking buffer was replaced with 2.5 mM
of 3−5′-diaminobenzidine (DAB) solution (Sigma-Aldrich) in
0.1 M sodium cacodylate buffer, pH = 7.4, during photo-
bleaching which was performed on a cold stage developed in-
house from a wet chamber and equipped with humidity and
temperature control.

A continuous epi-fluorescence illumination (150 W xenon
lamp) with a Cy5 red tilter with a 100× objective was used to
bleach a spot�a random field of view with several cells�on
the dish for 7 min on the cold stage. After photobleaching, the
cells were washed five times with 0.1 M sodium cacodylate
buffer. Reduced osmium solution (EMS) containing 2%
osmium tetroxide, 1.5% potassium ferrocyanide, and 2 mM
CaCl2 in 0.15 M sodium cacodylate buffer, pH = 7.4, was then
used to stain the cells for 30 min on ice. The cells were then
washed five times with double-distilled water on ice. Next,
serial ethanol dehydration (30%, 50%, 70%, 85%, 95%, 100%

twice) was performed on ice, and the last 100% ethanol wash
was performed at room temperature. Durcupan resin (EMS)
was used for infiltration and embedding. Resin mixture 1 was
prepared by mixing (i) 10 mL of Durcupan ACM single-
component A, M, epoxy resin, (ii) 10 mL Durcupan ACM
single component B, hardener 964, and (iii) 0.15 mL of
Durcupan ACM single component D. A 1:1 infiltration mixture
containing equal proportions of 100% ethanol and Durcupan
resin mixture 1 was used to infiltrate cells for 30 min at room
temperature. Next, a 2:1 infiltration mixture containing 5 mL
of 100% ethanol and 10 mL of Durcupan resin mixture 1 was
used to infiltrate the cells for 2 h at room temperature.
Durcupan resin mixture 1 was used to infiltrate the cells at
room temperature for 1 h. Resin mixture 2 was prepared by
adding 0.2 mL of Durcupan ACM, single component C,
accelerator 960 to mixture 1 (10 mL of component A, 10 mL
of component B, and 0.15 mL of component D). Durcupan
resin mixture 2 was used to infiltrate the cells at 50 °C in a
drying oven for 1 h.

The cells were embedded flat with fresh Durcupan resin
mixture 2 in BEEM capsules and cured at 60 °C in a drying
oven for 48 h. An ultramicrotome (UC7, Leica) was used to
prepare 100 nm thick sections that were deposited onto a
copper slot grid with carbon/Formvar film. Then, 10 nm
colloidal gold fiducial markers were deposited on both sides of
the sample. A 200 kV cFEG STEM (HD2300, HITACHI)
with HAADF mode was used to collect all images. While
keeping the field of view constant, the sample was tilted from
−60 to 60° with 2° increments on two roughly perpendicular
axes, with a pixel dwell time of ∼5 μs during image acquisition.
Each tilt series was aligned with fiducial markers in IMOD and
reconstructed using Tomopy with a penalized maximum
likelihood for 40 iterations independently.50,51 The final
tomogram was a 3D image size of 1230 × 1230 × 100 nm
with a nominal voxel size of 2.9 nm.

■ RESULTS AND DISCUSSION
Tetranucleosomes are widely considered the building block of
the chromatin fiber and have been crystallized and observed in
cryo-EM images of longer chromatin fibers.9 Recent studies
have suggested the existence of two tetranucleosome motifs

Figure 3. Resolution in dense chromatin regions is obstructed by the intrinsic noise of STEM imaging. (a) The α-tetrahedron and β-rhombus
tetranucleosome motifs have been proposed to play a regulatory and epigenetic role in the accessibility of DNA to external cellular machinery. The
α-tetrahedron promotes DNA compaction, whereas the β-rhombus results in elongated chomatic structures. Histone proteins are colored in red,
and DNA is colored in blue. (b) In this work we employ high-resolution ChromSTEM tomograms comprised of 33 slices at 1.23 μm × 1.23 μm ×
100 nm. The structural resolution accessible to experimental ChromSTEM tomograms is limited by the conformational variability of chromatin
within chromatin-rich regions, Poisson noise, and the ability of image segmentation approaches to differentiate background and chromatin signal by
voxel intensity.
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that regulate gene expression�the α-tetrahedron and β-
rhombus (Figure 3a).10,11 Experiments and modeling studies
have indicated that these two energetically stable conforma-
tions may induce local chromatin compaction (α-tetrahedron)
or the formation of elongated aggregates (β-rhombus) and are
therefore proposed to play important regulatory and epigenetic
roles in the accessibility of DNA to external machinery such as
transcription factors.10,11,52,53 While ChromSTEM has been
able to resolve variably packed nucleosomes and linker DNA
segments at ∼2 nm spatial resolution, the variation of size,
density, and shape of chromatin rich regions can obstruct finer-
scale resolution of the structural arrangement of nucleosomes
(Figure 3b). The structural resolution is also degraded by
Poisson (i.e., shot) noise associated with electron counting
statistics and the relatively poorer performance of segmenta-
tion (i.e., differentiation of background and chromatin signal
by voxel intensity) within chromatin-rich regions relative to
regions where nucleosomes are well-separated and have
uniform intensity.16 We develop a machine-learning-assisted
computational denoising platform by training a denoising
autoencoder (DAE) over coarse-grained molecular dynamics
simulations and apply the DAE to in situ high-resolution
HAADF ChromSTEM microscopy images of chromatin within
mammalian cell lines to resolve tetranucleosome motifs.

Testing on Synthetic Data. To validate our trained DAE,
we first tested its performance against standard denoising
techniques in an application to synthetic ChromSTEM images
to which artificial noise was added and the ground truth (i.e.,
noise-free) images were exactly known. We collected 3000 test
images harvested from 1CPN MD simulations of chromatin
fibers varying from 150 to 200 nucleosome repeat lengths
(NRLs) and comprised of 4−16 nucleosomes and converted
these into noise-free images I and noisy images I ̃ using eqs 1
and 2. Importantly, the test set data were never exposed to the
DAE at any point during their training. We report in Table 1

the denoising performance of our DAE compared to the
popular nonlocal means (NLM) and block-matching and 3D
filtering (BM3D) techniques.54,55 Performance is assessed
using the mean square error (MSE), structural similarity index
(SSIM), and peak signal-to-noise ratio (PSNR) metrics that
are commonly used to benchmark denoising methods.46 Better
performance is associated with a reduction in cumulative
squared error between the compressed and the original image

(lower MSE), an increase in the ratio between the maximum
possible power of an image and the power of corrupting noise
(higher PSNR), and preservation of structural information
between the reference and denoised image (higher SSIM). We
present in Figure 4 an illustrative example of the application of
each of the three denoising approaches to a representative
snapshot taken from the 3000 test images.

Our DAE performed the best in all three denoising
performance metrics (MSE = 0.003, SSIM = 0.83, PSNR =
26 dB), followed by BM3D (MSE = 0.007, SSIM = 0.55,
PSNR = 22 dB) and nonlocal means (MSE = 0.011, SSIM =
0.15, PSNR = 20 dB). This represents a 57% improvement in
MSE relative to BM3D and 72% improvement over nonlocal
means (Table 1). From the example in Figure 4, we can see
that our denoising autoencoder is not only able to remove the
applied Gaussian and Poisson noise but also has the ability to
account for distortions which are typical to STEM experiments
by virtue of the fact that it was trained on 1CPN molecular
dynamics training data that preserve the physically representa-
tive structure of the chromatin strand. Given that denoising
autoencoders are inherently lossy compression methods, some
fuzzy imaging or loss of information is expected during the
encoding process which can lead to broader output signals.
The primary goal of our DAE method is to achieve a balance
between noise reduction and preservation of structural features
in the ChromSTEM images. While it might be possible to

Table 1. Mean and Standard Deviation for 3000 Synthetic
ChromSTEM Test Images Calculated to Compare the
Denoising Performance of Our DAE against Nonlocal
Means (NLM) and Block-Matching and 3D Filtering
(BM3D)a

denoiser MSE SSIM PSNR (dB)

NLM 0.011 ± 0.003 0.15 ± 0.04 20 ± 1
BM3D 0.007 ± 0.004 0.55 ± 0.17 22 ± 2
DAE 0.003 ± 0.001 0.83 ± 0.04 26 ± 2

aSnapshots were harvested from 1CPN MD simulations of chromatin
fibers varying from 150 to 200 nucleosome repeat lengths (NRLs)
and comprised of 4−16 nucleosomes and converted into noise-free
images I and noisy images I ̃ using eqs 1 and 2. Denoising performance
is compared using the mean square error (MSE), structural similarity
index (SSIM), and peak signal-to-noise ratio (PSNR) metrics. The
DAE outperforms nonlocal means and BM3D along all three
performance metrics (low MSE, high PSNR, high SSIM).

Figure 4. Illustrative example of DAE denoising performance to one
selected synthetic ChromSTEM test image harvested from the 1CPN
MD simulations. (a) The selected snapshot was harvested from 1CPN
MD simulations of chromatin fibers varying from 150 to 200
nucleosome repeat lengths (NRLs) comprised of 4−16 nucleosomes.
(b) The noise-free synthetic ChromSTEM image I was constructed
from the MD snapshot using eq 1. This constitutes the ground truth
image against which we evaluate denoising performance. (c) The
noisy image I ̃ was generated by adding artificial noise representative of
that found in angle annular dark field (HAADF) STEM experiments
to the noise-free image using eq 2. The denoised image I ̂ produced
from the noisy test image by (d) nonlocal means (NLM), (e) block-
matching and 3D filtering (BM3D), and (f) the DAE. The DAE
outperforms NLM and BM3D along all three performance metrics
(low MSE, high PSNR, high SSIM) for this particular image and over
all 3000 test images (cf. Table 1).
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reduce these broader signals further, doing so could
compromise the performance of the DAE or lead to overfitting.

We do observe that although our test does expose the DAE
to novel synthetic ChromSTEM images it has not before
encountered, they are generated using the same model as the
training data. Conversely, the nonlocal means and BM3D
approaches are standard algorithms that are not trained over
images from a particular domain and are more general-purpose
denoising tools. As expected, the DAE appears to have learned
to distinguish the physical arrangement of nucleosomes along
the chromatin fiber within the physics-based simulation
training data from the applied noise model and can use
these learned patterns to effectively denoise new synthetic
ChromSTEM images that it has not previously encountered. A
possible cost of this learning is, of course, that the DAE will
likely not serve as a good general-purpose, application-agnostic
denoising algorithm in the same manner as nonlocal means
and BM3D.

Application to Experimental Data. After validating that
our DAE was capable of removing noise while preserving local
structural features from our synthetic data set, we move to
apply it to experimental ChromSTEM images of chromatin.
Figure 5 shows the difference between a raw and denoised
experimental tomogram of an imaged human pulmonary
adenocarcinoma epithelial cell (A549 cell). A pseudocolor
gradient as opposed to a single grayscale channel is employed
to display pixel intensity for better visibility and to more clearly
highlight the features within the image. Visual inspection of the
denoised experiment confirms the ability of our DAE to
remove noise and its ability to better resolve nucleosomes
within chromatin-dense regions. Closer inspection of a
randomly selected region of the denoised image (Figure
5b,e,f) clearly reveals the existence of clusters of a few
nucleosomes that previous studies have suggested may play a
role in the formation of topologically associated domains
(TADs) in chromatin biology and which are much less clearly
resolved in the original image (Figure 5a,c,d).10 We also

Figure 5. Application of the DAE to denoise the experimental tomogram of an imaged A549 cell. The (a) original experimental image and (b)
image generated after passage through the trained DAE. To improve visual clarity and better highlight features of the images, the pixel intensities
are normalized to a [0,1] scale and colored by a pseudocolor gradient indicated by the colorbar as opposed to a single grayscale channel. The
denoised image achieves improved resolution of nucleosome-level features within chromatin-rich regions of the experimental image. A subsection
comparison between the original (c) and denoised experiment (e) shows the reduction of noise and results in a smoother 3D reconstruction of the
chromatin fiber from the denoised image (f) compared to the original (d). (g) A comparison of the power spectral density (PSD), P(k), between
the raw and denoised images shows the denoised image to preserve the large-scale, low-frequency energy density at small wavenumbers k
corresponding to the morphological structure of the chromatin fiber and attenuate the small-scale, high-frequency components at high k that can be
primarily attributed to noise.
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compare the power spectral densities (PSDs) of the raw and
denoised image stacks (Figure 5g). We see good agreement of
the PSD at lower wavenumbers, which correspond to the large-
scale (i.e., low-frequency) structural and morphological
features of the image. At higher wavenumbers, the PSD of
the denoised image exhibits a linear decrease relative to the
raw image, which can be interpreted as the attenuation of
small-scale (i.e., high-frequency) noise in the experimental
image. Taken together, these results indicate that the
important structural signal within the experimental Chrom-
STEM image is preserved by our denoising approach and
produces superior resolution of nucleosome-level features
within the chromatin-rich regions of the image.

To determine whether these small nucleosomal clusters are
comprised of either of the two recently identified folding
motifs (α-tetrahedron or β-rhoumbus), we visually inspect a
number of nucleosome clusters extracted from chromatin-rich
regions within a 50 × 50 nm section of the experimental
tomogram (Figure 6). It is challenging to discern from
inspection of the raw image, but after passage through the DAE
it is visually apparent that these chromatin-dense regions are
primarily composed of tetranucleosome motifs (Figure 7). To

quantify our assertion, we construct a density map from our
denoised STEM image stack and fit a prototypical α-
tetrahedral tetranucleosome folding motif reconstructed from
a single atomic nucleosome structure (PDB: 1KX5).23 To find
an optimal fit, the cross-correlation coefficient (CCC) score
was used to maximize the fit of a simulated map from the
atomic structure and our volume map using the density
mapping algorithm from the Chimera software.56 We find an
improved optimal fit with an average high correlation score of
0.87 versus a correlation score of 0.85 for the original
tomogram (Figure 6). Though comparatively small, incremen-
tal quantitative improvements can provide insightful details
about the chromatin structure. Detecting and quantifying
tetranucleosome motifs in raw and denoised images remains an
important task and a significant challenge in the field, and
expert experimentalists are crucial for interpreting results due
to their deep understanding of the biological context and
ability to assess image quality and identify relevant
features.57,58 Our denoising method improved the detection
of tetranucleosome motifs primarily based on visual cues,
resulting in a more accurate representation of chromatin
structure in denoised chromSTEM images (Figure 7).

Figure 6. Denoised ChromSTEM images reveal tetranucleosome motifs within a dense chromatin cluster. Analysis of nucleosome clusters extracted
from chromatin-rich regions of the (a) raw experimental tomogram and (b) after passing through the DAE. The denoised image clearly shows the
presence of α-tetrahedron motifs that are difficult to discern in the raw image. Using Chimera, we construct a prototypical tetranucleosome motif
(PDB: 1KX5) within the extracted volume of our denoised tomogram and find an optimal fit with an average high correlation score of 0.87.56 The
construction of the 3D interpolation from the 2D imaging slices is computationally expensive but can, in principle, be extended to large sections of
chromatin using high-performance computing resources.

Figure 7. Denoised ChromSTEM images reveal tetranucleosomes motifs within dense chromatin clusters. Analysis of nucleosome clusters
extracted from chromatin-rich regions within a 200 × 200 nm2 section of the (a) raw experimental tomogram and (b) after passing through the
DAE. The denoised image clearly shows the presence of (c) α-tetrahedron motifs that are difficult to discern in the raw image. We find no evidence
for β-rhombus motifs or for the 30 nm fiber.
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These tetranucleosome motifs are known to promote DNA
compaction and lead to chromatin condensation, and the
preponderance of these structural elements observed within
chromatin-dense regions is consistent with prior experiment
and simulation.10,11 In contrast, we do not observe any zigzag
β-rhombus motifs or find any evidence for the formation of the
postulated 30 nm fiber.59 These results support a model in
which the in situ structural organization of chromatin within
chromatin-dense regions in the cell is not a 30 nm fiber, but
rather largely composed of smaller tetranucleosome motifs.

Identifying Packing Domains and Their Statistical
Properties From Denoised ChromSTEM Stack. The
denoised images produced by the DAE enable more robust
resolution of chromatin-rich packing domains and improved
estimation of statistical distribution of their structural proper-
ties such as size, packing scaling exponents, and chromatin
volume concentration. We first describe these analyses in the
context of the raw ChromSTEM images and then demonstrate
how our statistical resolution improves within the denoised
images.

Considering first the raw 3D ChromSTEM tomogram
presented in Figure 5a, we extracted 76 chromatin-rich packing
domains and then subjected them to structural analysis to
determine the distribution of domain sizes Rf. To do so, we
adopted two complementary definitions of domain size. First,
we identified the centroid of each domain by creating a local
chromatin intensity map by applying Gaussian filtering and
local contrast enhancement to the grayscale ChromSTEM z-
stacks. We appeal to the fact that ChromSTEM intensity is

approximately linearly proportional to mass to fit a scaling law
between mass M and distance r from the centroid of each
domain.15 Following classical power-law polymer scaling
relations, mass and distance are expected to be related as
M(r) ∝ rD, where M is defined as the integrated mass (i.e.,
intensity) lying at a particular radial distance r from the
domain centroid and D is the packing scaling exponent for the
polymer that is anticipated to be approximately constant over a
particular range of length scales.60 We computed best-fit values
of the packing scaling exponent D by fitting power laws over
the range of [0,r] at increasing r and defined the domain size
Rf

(1) as the distance r at which we observe more than 5%
deviation from the best-fit power law. This demarcates the
length scale at which a single power-law relationship no longer
holds and constitutes our first definition of Rf (Figure S1a,b).
Second, we calculated the radial density profile of chromatin as
a function of distance r from the centroid of the domain. This
profile is expected to monotonically decrease until the distance
r reaches the boundary of the domain and then increase again
as it begins to encroach upon a neighboring domain (Figure
S1c). The minimum in the radial density profile defines our
second definition of domain size Rf

(2). Finally, we defined the
domain size Rf = min(Rf

(1), Rf
(2)). We observe that the two

complementary definitions of domain size over which we take
the minimum are necessary to properly account for the
environment in which the domains may be found: in
chromatin-poor environments where the domains are isolated,
we expect domain-size to be dictated by the mass distribution
of the single domain under consideration and Rf

(1) < Rf
(2); in

Figure 8. Structural analysis of chromatin-rich packing domains from the DAE-denoised A549 3D ChromSTEM tomogram. (a) A 3D
conformation of a packing domain identified from the denoised ChromSTEM tomogram (Figure 5b). Statistical distribution of (b) domain size Rf,
(c) packing scaling exponent D, and (d) cluster volume concentration CVC, over the 85 chromatin-rich packing domains identified from the
denoised ChromSTEM tomogram. Denoising enables identification of ∼12% more domains and domains more closely associated in space relative
to analysis of the raw 3D ChromSTEM tomograms.
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chromatin-rich environments, we anticipate Rf
(2) < Rf

(1) and
domain size should be more appropriately defined as an
multibody property that defines the boundary between
domains.

Having defined Rf and D for each domain, we compute the
chromatin volume concentration, CVC, which correlates with
the binding efficiency of transcriptional reactants and is defined
as the fraction of volume occupied by chromatin.13,15 The
CVC was calculated as the total number of nonzero voxels over
the total number of voxels per domain.15 The distributions of
these three quantities for the 76 chromatin-rich domains
extracted from the raw A549 3D ChromSTEM tomograms are
presented in Figure S2, for which we report means and
standard deviations of Rf = 71 ± 26 nm, D = 2.46 ± 0.18, and
CVC = 42 ± 14%. We previously demonstrated that chromatin
forms spatially well-defined higher-order domain structures
with radii ranging between an interquartile range of 60−90 nm
in A549 cells and observe that our present measure of mean
domain size lies squarely within this range.15

A concern of applying this structural analysis to the raw
ChromSTEM tomograms is the introduction of errors into
both the definition of the domains and their structural
properties due to the noise inherent in the experimental
images. Accordingly, we repeated this analysis for the DAE
denoised 3D ChromSTEM tomogram presented in Figure 5b.
In doing so, our procedure identified 85 chromatin-rich
packing domains, 9 more than were identified in the raw
images. An analysis reveals that application of the domain
identification procedure to the denoised image enables
identification of more domains and better resolves domains
more closely packed in space (Figure S3). The improvement in
signal-to-noise ratio in the denoised tomogram appears to
assist in the identification of domain centers that cannot be
resolved in the raw tomogram and which are confirmed by
manual visual analysis. To assess the possibility of introducing
artifacts through the DAE denoising, we present in Figure 8
the statistical analysis of Rf, D, and CVC over the 85 denoised
ChromSTEM domains. The mean reported values of Rf = 69 ±
24 nm, D = 2.65 ± 0.11, and CVC = 60 ± 13% are all in good
agreement with the analysis of both the raw ChromSTEM
images and our prior analyses15 but are now based on better
statistics enabled by the identification of ∼12% more domains
in the denoised images.

■ CONCLUSIONS
By leveraging molecular dynamics and machine-learning
approaches, we constructed and trained a denoising
autoencoder (DAE) capable of removing noise commonly
found in scanning transmission electron microscopy tomog-
raphy with ChromEM staining (ChromSTEM) imaging. The
model is trained over physics-based coarse-grained molecular
dynamics simulations using the 1CPN model and learns to
distinguish the signal from ground truth chromatin structures
from artificial noise mimicking the noise profile inherent to
experimental STEM imaging. In tests on synthetic Chrom-
STEM images generated by molecular simulations for which
the ground truth is exactly known, the training outperforms
standard denoising approaches, offering a 57% improvement in
the mean squared error relative to block-matching and 3D
filtering and a 72% improvement over nonlocal means. In
applications to in situ experimental ChromSTEM images of
chromatin within human pulmonary adenocarcinoma epithelial
cells (A549 cells), we demonstrate that the DAE eliminates

high-frequency noise while preserving the large-scale signal
characterizing the chromatin organizational structure. The
denoised images enable identification of tetranucleosome
motifs at a resolution inaccessible within the raw images and
expose the α-tetrahedron as the predominant organizational
subunit within chromatin-dense regions in the cell and which
have been suggested to play a role in chromatin compaction
and regulation of gene expression. Notably, we find no
evidence for the presence of β-rhombus tetranucleosome
motifs or for the 30 nm fiber. The denoised images also permit
the identification of ∼12% more chromatin-rich packing
domains that are obscured by noise within the raw images,
enabling improved statistical resolution of the distribution of
domain sizes, packing scaling exponents, and chromatin
volume concentrations without apparently introducing stat-
istical artifacts. The domain size distributions are consistent
with, but have higher statistical resolution and smaller
uncertainties than, our prior analyses.15

The nucleosome motifs exposed by this approach enable a
new understanding and insight into the small-scale structural
organization of chromatin within the cell and how these
structures can influence DNA accessibility and gene regulation.
The present work focused primarily on the analysis of
tetranucleosome motifs, but in future work we hope to expand
our focus to smaller di- and trinucleotide motifs. We anticipate
that the approaches reported in this study may be applied to
ChromSTEM imaging to advance our understanding of how
stress and epigenetic factors affect chromatin conformation
and gene regulation and may also be applied to other imaging
techniques such as cryogenic electron microscopy (cryo-EM).
Our study also exemplifies a generic paradigm wherein
experimental imaging and theoretical modeling may be bridged
via machine-learning approaches to enable high-resolution
exploration of structural organization within biological systems.
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Trampert, P.; Slusallek, P.; de Jonge, N. Combined Tilt- and Focal-
Series Tomography for HAADF-STEM. Microscopy Today 2016, 24,
26−31.
(34) Luther, P. K. In Electron Tomography: Methods for Three-
Dimensional Visualization of Structures in the Cell; Frank, J., Ed.;
Springer New York: 2006; pp 17−48.
(35) Mevenkamp, N.; Binev, P.; Dahmen, W.; Voyles, P. M.;

Yankovich, A. B.; Berkels, B. Poisson noise removal from high-
resolution STEM images based on periodic block matching. Advanced
Structural and Chemical Imaging 2015, 1, 1−19.
(36) Jondral, F. K. White gaussian noise−models for engineers.
Frequenz 2018, 72, 293−299.
(37) Maraghechi, S.; Hoefnagels, J. P.; Peerlings, R. H.; Geers, M. G.

Correction of scan line shift artifacts in scanning electron microscopy:
An extended digital image correlation framework. Ultramicroscopy
2018, 187, 144−163.
(38) Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.-

A. Stacked Denoising Autoencoders: Learning Useful Representations
in a Deep Network with a Local Denoising Criterion. Journal of
Machine Learning Research 2010, 11, 3371−3408.
(39) Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.-A.

Extracting and composing robust features with denoising autoen-
coders. Proceedings of the 25th international conference on Machine
learning, 2008; pp 1096−1103.
(40) JGraph, Diagrams.net. 2021; https://github.com/jgraph/

drawio.
(41) Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional

Networks for Semantic Segmentation. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2015.
(42) Creswell, A.; Arulkumaran, K.; Bharath, A. A. On denoising
autoencoders trained to minimise binary cross-entropy. arXiv preprint
arXiv:1708.08487, 2017.
(43) Chollet, F. Keras. https://keras.io, 2015.
(44) Kingma, D. P.; Ba, J. Adam: A Method for Stochastic
Optimization. 2014; https://arxiv.org/abs/1412.6980.

(45) Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality
assessment: from error visibility to structural similarity. IEEE
Transactions on Image Processing 2004, 13, 600−612.
(46) Fan, L.; Zhang, F.; Fan, H.; Zhang, C. Brief review of image

denoising techniques. Visual Computing for Industry, Biomedicine, and
Art 2019, 2, 1−12.
(47) Horé, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM.
20th International Conference on Pattern Recognition, 2010; pp 2366−
2369.
(48) Solomon, C.; Breckon, T. Fundamentals of Digital Image
Processing: A practical approach with examples in Matlab; Wiley: 2011.
(49) Harris, C. R.; Millman, K. J.; van der Walt, S. J.; Gommers, R.;

Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,
N. J.; Kern, R.; Picus, M.; Hoyer, S.; van Kerkwijk, M. H.; Brett, M.;
Haldane, A.; del Río, J. F.; Wiebe, M.; Peterson, P.; Gérard-Marchant,
P.; Sheppard, K.; Reddy, T.; Weckesser, W.; Abbasi, H.; Gohlke, C.;
Oliphant, T. E. Array programming with NumPy. Nature 2020, 585,
357−362.
(50) Kremer, J. R.; Mastronarde, D. N.; McIntosh, J. R. Computer

visualization of three-dimensional image data using IMOD. J. Struct.
Biol. 1996, 116, 71−76.
(51) Gürsoy, D.; De Carlo, F.; Xiao, X.; Jacobsen, C. TomoPy: a

framework for the analysis of synchrotron tomographic data. Journal
of Synchrotron Radiation 2014, 21, 1188−1193.
(52) Ekundayo, B.; Richmond, T. J.; Schalch, T. Capturing

Structural Heterogeneity in Chromatin Fibers. J. Mol. Biol. 2017,
429, 3031−3042.
(53) Takizawa, Y.; Ho, C.-H.; Tachiwana, H.; Matsunami, H.;

Kobayashi, W.; Suzuki, M.; Arimura, Y.; Hori, T.; Fukagawa, T.; Ohi,
M. D.; Wolf, M.; Kurumizaka, H. Cryo-EM Structures of Centromeric
Tri-nucleosomes Containing a Central CENP-A Nucleosome.
Structure 2020, 28, 44−53.e4.
(54) Buades, A.; Coll, B.; Morel, J.-M. Non-local means denoising.
Image Processing On Line 2011, 1, 208−212.
(55) Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image

denoising with block-matching and 3D filtering. Image processing:
algorithms and systems, neural networks, and machine learning; SPIE:
2006; pp 354−365
(56) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.;

Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera−a
visualization system for exploratory research and analysis. J. Comput.
Chem. 2004, 25, 1605−1612.
(57) Cardona, A.; Tomancak, P. Current challenges in open-source

bioimage informatics. Nat. Methods 2012, 9, 661−665.
(58) Meijering, E.; Carpenter, A. E.; Peng, H.; Hamprecht, F. A.;

Olivo-Marin, J.-C. Imagining the future of bioimage analysis. Nature
biotechnology 2016, 34, 1250−1255.
(59) Grigoryev, S. A.; Woodcock, C. L. Chromatin organization -

The 30nm fiber. Exp. Cell Res. 2012, 318, 1448−1455.
(60) Pethrick, R. Polymer physics; Rubinstein, M., Colby, R. H., Eds.;

Oxford University Press: 2003; p 440.

ACS Central Science http://pubs.acs.org/journal/acscii Research Article

https://doi.org/10.1021/acscentsci.3c00178
ACS Cent. Sci. XXXX, XXX, XXX−XXX

M

https://github.com/MaterialEyes/atomagined
https://github.com/MaterialEyes/atomagined
https://doi.org/10.1186/s40679-017-0046-1
https://doi.org/10.1186/s40679-017-0046-1
https://doi.org/10.1186/s40679-017-0048-z
https://doi.org/10.1186/s40679-017-0048-z
https://doi.org/10.1186/s40679-017-0048-z
https://doi.org/10.1039/C4CP04232H
https://doi.org/10.1039/C4CP04232H
https://doi.org/10.1017/S1431927605050361
https://doi.org/10.1017/S1431927605050361
https://doi.org/10.1017/S1431927605050361
https://doi.org/10.1093/jmicro/dfp052
https://doi.org/10.1093/jmicro/dfp052
https://doi.org/10.1002/adma.201501015
https://doi.org/10.1002/adma.201501015
https://doi.org/10.1002/adma.201501015
https://doi.org/10.1016/S0304-3991(03)00105-0
https://doi.org/10.1016/S0304-3991(03)00105-0
https://doi.org/10.1016/S0304-3991(03)00105-0
https://doi.org/10.1017/S1551929516000328
https://doi.org/10.1017/S1551929516000328
https://doi.org/10.1186/s40679-015-0004-8
https://doi.org/10.1186/s40679-015-0004-8
https://doi.org/10.1515/freq-2017-0064
https://doi.org/10.1016/j.ultramic.2018.01.002
https://doi.org/10.1016/j.ultramic.2018.01.002
https://github.com/jgraph/drawio
https://github.com/jgraph/drawio
https://keras.io
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1186/s42492-019-0016-7
https://doi.org/10.1186/s42492-019-0016-7
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1006/jsbi.1996.0013
https://doi.org/10.1006/jsbi.1996.0013
https://doi.org/10.1107/S1600577514013939
https://doi.org/10.1107/S1600577514013939
https://doi.org/10.1016/j.jmb.2017.09.002
https://doi.org/10.1016/j.jmb.2017.09.002
https://doi.org/10.1016/j.str.2019.10.016
https://doi.org/10.1016/j.str.2019.10.016
https://doi.org/10.5201/ipol.2011.bcm_nlm
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1038/nmeth.2082
https://doi.org/10.1038/nmeth.2082
https://doi.org/10.1038/nbt.3722
https://doi.org/10.1016/j.yexcr.2012.02.014
https://doi.org/10.1016/j.yexcr.2012.02.014
http://pubs.acs.org/journal/acscii?ref=pdf
https://doi.org/10.1021/acscentsci.3c00178?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

