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1.  INTRODUCTION

Optical imaging systems have traditionally been analyzed using well-
established approximations such as ray-based geometrical optics (Born & 
Wolf, 1999) and scalar Fourier theory (Goodman, 1996). However, there 
has recently been increased interest in applying the rigorous framework of 
Maxwell’s-equations-based electromagnetic theory and numerical model-
ing to the analysis of optical imaging systems. The availability of more pow-
erful computer hardware and more efficient computational algorithms has 
obviously contributed to this interest. Although the basic principles of light 
scattering encoded in Maxwell’s equations had been around for decades, 
the widespread application of these principles to the complete modeling of 
an optical imaging system had to wait until the 1990s, at which time the 
personal computers were getting powerful enough to process megabytes of 
data in their memory. This allowed the modeling of objects that are compa-
rable in size to the wavelength of the illuminating light (400–800 nm). With 
the arrival of these computational capabilities, the possibility of bypassing 
most of the traditional simplifying approximations and numerically calcu-
lating the optical image of an arbitrary object was at hand; and the demand 
for this accuracy was already present. Some engineering applications require 
the control of all the aspects of the optical imaging system down to sub-
wavelength precision. Examples of such applications can be found in many 
subfields of physics and engineering. Historically, the earliest work on the 
numerical simulation of optical imaging was for modeling integrated-
circuit production via photolithography (Cole, Barouch, Conrad, & Yeung, 
2001; Neureuther, 2008), integrated-circuit inspection (Neureuther, 1992), 
and mark alignment (Nikolaev & Erdmann, 2003). More recently, there 
has been increasing interest in modeling optical microscopy modali-
ties (Capoglu et al., 2011; Hollmann, Dunn, & DiMarzio, 2004; Sierra, 
DiMarzio, & Brooks, 2008; Simon & DiMarzio, 2007; Tanev, Pond, Paddon, 
& Tuchin, 2008; Tanev, Sun, Pond, Tuchin, & Zharov, 2009). If realized 
to its full potential, this technique could have immediate benefit on the 
optical detection of early stage nanoscale alterations in precancerous cells 
(Subramanian et al., 2008, 2009). This review/tutorial paper is primarily 
aimed as a reference for the numerical algorithms and techniques necessary 
for implementing a purely virtual imaging system, which we will refer to as 
a “microscope in a computer.” Since the basic principles are also applicable 
to any other optical imaging system, this paper could also be consulted for 
modeling photolithography and metrology systems.
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Although Maxwell’s-equations-based electromagnetic principles have 
been successfully applied to the characterization of optical systems, the 
literature on the subject is fragmented across several independent lines of 
research, resulting in considerable overlap and inefficiency. This is a con-
sequence of the fact that different forms of optical imaging systems are 
employed in many independent branches of engineering, sometimes based 
on similar principles but for diverse purposes. This fragmented literature 
has not yet been compiled and categorically documented for the benefit of 
the general engineering community. In this paper, we present a coherent 
and self-contained account of the numerical electromagnetic simulation of 
optical imaging systems, and review the body of work amassed in this rap-
idly growing field. We place special emphasis on numerical modeling issues 
such as discretization, sampling, and signal processing. Although the major-
ity of the paper is tailored for optics, most of the concepts and formulas 
given in Section 2 and Sections 3.1–3.3 are applicable to a broader range 
of electromagnetics problems involving antennas, antenna arrays, meta-
materials, RF, and microwave circuits and radars. The refocusing concept 
in Section 3.4, however, is a defining characteristic of an optical imaging 
system, with few exceptions such as focused antenna arrays in RF electro-
magnetics (Hansen, 1985).

The remainder of the paper is organized as follows. In Section 2, the 
basic principles of electromagnetics and optical coherence are reviewed. In 
Section 3, the optical imaging system is divided into fundamental com-
ponents, and the numerical simulation of each component is described 
in detail. In Section 4, an optical imaging simulation system based on the 
finite-difference time-domain method is introduced, and several micros-
copy simulation examples are presented. A summary of our review and 
some concluding remarks are given in Section 5.

2.  BASIC PRINCIPLES OF ELECTROMAGNETICS 
AND OPTICAL COHERENCE

An integral part of the numerical electromagnetic analysis of optical 
imaging systems is based on a set of vectorial relationships called Maxwell’s 
equations that explain the propagation of light and its behavior in material 
media. These equations describe the nature and interrelationship of two 
vectorial quantities, the electric and magnetic field vectors E(r, t) and H(r, t),  
in free space and matter. The interaction of these vectors with matter is 
specified by two scalar material properties, the relative permittivity ǫr(r) and 



İlker R. Çapoğlu et al.4

permeability µr(r). In crude terms, these two material properties quantify 
the response of matter to the electric and magnetic fields, respectively. In 
free space, these parameters are both equal to unity (ǫr = µr = 1). In dif-
ferential form, Maxwell’s equations are written as

where the symbol “∇×” denotes the curl operator, which locally quanti-
fies the amount and orientation of the “vorticity” in the vector field, and 
“∇·” denotes the “div” operator, which quantifies the local magnitude of 
the “source” or “sink” associated with the vector field. Both definitions 
are in analogy to a velocity field in a fluid-dynamics context. In these 
equations, the electric current density J (r, t) acts as the excitation for the 
electromagnetic field. If the response of a system at a particular frequency 
of operation ω is of interest, Maxwell’s equations simplify to their time-
harmonic versions in which the time dependence is factored out in the 
form exp(jωt):

Here and in what follows, calligraphic fonts A, B will be used to denote 
general time dependence, while Roman fonts A, B will be used to denote 
time-harmonic quantities for which the time dependence exp(jωt) is 
implicit. In the engineering literature, it is customary to refer to Equations 
(1)–(4) as being in the time domain, and the time-harmonic versions (5)–(8) 
as being in the frequency domain.

In optics, the parameter n = (ǫrµr)
1/2 is called the refractive index of the 

medium. It relates the light velocity v in the medium to the velocity c in the 
vacuum as v = c/n. In electromagnetics, the expression WE = ǫrǫ0|E(r)|2/2 
is the average electrical energy density at a point in space (in SI units). 
In the geometrical-optics (small-wavelength) approximation, the radiated 

(1)∇ × E = −µrµ0
dH

dt
,

(2)∇ × H = J + ǫrǫ0
dE

dt
,

(3)∇ · E = ρ,

(4)∇ · H = 0,

(5)∇ × E = −jωµrµ0H,

(6)∇ × H = J + jωǫrǫ0E,

(7)∇ · E = ρ,

(8)∇ · H = 0.
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power per unit area in the local direction of propagation is equal to 
I = 2(c/n)WE (Born & Wolf, 1999). Assuming non-magnetic media 
(µr = 1), this becomes

in which η0 = (µ0/ǫ0)
1/2 is the wave impedance of free space. Although 

alternative terminologies do exist, we will use the term light intensity or 
simply intensity for the radiated power per unit area. The light intensity is a 
direct measure of the signal collected by recording media that convert light 
energy to other forms of energy. Examples of these recording media include 
photoresists, CCD cameras, and the retina. We will assume non-magnetic 
media throughout the paper and define the light intensity as in (9).

In most practical situations, the excitation in the optical system (whether 
it be a filament or a laser source) has a certain random character. This creates 
randomness in the resulting optical electromagnetic field in both space and 
time. If this is the case, the electromagnetic field may only be represent-
able as a random field that possesses certain statistical properties. Fortunately, 
we are almost always concerned with time averages of optical parameters 
such as intensity or polarization, because these are the only parameters that 
most optical instruments can measure. If an adequate statistical model is 
constructed for the random electromagnetic field, the average quantities 
measured at the output of the system can be inferred mathematically. The 
categorization and rigorous mathematical description of these matters is the 
subject of optical coherence (Born & Wolf, 1999; Goodman, 2000). Although 
optical illumination systems almost always have a random character, the 
numerical electromagnetic simulation methods considered in this paper 
operate on deterministic field values that are known precisely in space and 
time. Numerical solutions of differential equations that operate directly on 
statistically averaged values [such as the radiative transfer equation (Ishimaru, 
1999)] are outside the scope of this paper; see (Arridge & Hebden, 1997) 
for a review of these methods. The question arises, therefore, as to whether 
it is possible to compute statistical averages belonging to infinite random 
processes using completely deterministic numerical electromagnetic simu-
lation methods. It turns out that this is possible, provided that the physical 
system satisfies certain conditions. One of the simplest of such situations is 
when the excitation is statistically stationary in time. Stationarity, in its strict-
est form, means that the statistical properties of the waveforms anywhere 
in the system do not change in time. This is a reasonable assumption for 
many forms of optical sources and will be made throughout this paper. The 

(9)I = n|E(r)|2/η0,
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study of non-stationary, spectrally partially coherent sources are outside the 
scope of this review. Interested readers may consult references (Christov, 
1986; Lajunen, Vahimaa, & Tervo, 2005; Wang, Lin, Chen, & Zhu,  2003).  
The importance of stationarity is manifested when the response of a 
linear system to a stationary time waveform is sought. This is the case in 
our analysis, because both Maxwell’s equations (5)–(8) and the scattering 
materials are assumed to be linear. Let us consider an input waveform xi(t) 
exciting the system in some way and an output waveform xo(t) measured 
somewhere else. If xi(t) is the only excitation, the relation between these is 
a convolution with the impulse response h(τ ) of the system:

The transfer function H(ω) is defined as the Fourier transform of the impulse 
response h(τ ),

It can be shown that the power-spectral densities Si(ω) and So(ω) of the 
input and output waveforms are related linearly by the absolute square of 
the transfer function (Born & Wolf, 1999; Goodman, 2000; Haykin, 2001; 
Papoulis, 1991):

The power-spectral density is an optically relevant and directly measurable 
quantity, defined as the power at the output of a narrowband filter centered 
at ω. The Wiener–Khintchine theorem (Born & Wolf, 1999) states that it is 
also the Fourier transform of the correlation function associated with the 
stationary waveform. The relation (12) is the central result that connects 
random waveforms in optics with the deterministic numerical methods 
of electromagnetics. In a given problem, the power-spectral density of the 
source Si(ω) is usually known, and the power-spectral density of the out-
put So(ω) is desired. The necessary link is provided by the absolute square 
of the transfer function H(ω). A numerical electromagnetic method can 
be used to find H(ω) by sending deterministic signals through the optical 
system, and calculating the response. Although the majority of the formu-
las in this review will be given for a fixed frequency ω, the response to a 
broadband stationary waveform can easily be obtained by repeating the 
analysis for different ω and using the power-spectral density relation (12).  

(10)xo(t) =
∫ ∞

−∞
h(τ )xi(t − τ)dτ.

(11)H(ω) =
∫ ∞

τ=−∞
h(τ )e−jωτ dτ.

(12)So(ω) = |H(ω)|2Si(ω).
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This repetition becomes unnecessary if a time-domain method is used 
to obtain the scattering response. In such a case, H(ω) can be directly 
obtained at a range of frequencies via temporal Fourier transform of the 
time-domain response.

3.  STRUCTURE OF THE OPTICAL IMAGING SYSTEM

An optical imaging system can be decomposed into several subsys-
tems, each performing a self-contained task that is simple enough to model 
theoretically. Once the theoretical underpinnings of each subsystem are laid 
out, the numerical computation of actual physical parameters concerning 
the subsystem (transmission coefficients, far-field intensities, aberrations, etc.) 
becomes a matter of approximating the analytical equations in a suitable 
manner. We represent the optical imaging system as a combination of four 
subsystems: illumination, scattering, collection, and refocusing. These sub-
systems are drawn schematically in Figure 1.

3.1  Illumination
The light source and the lens system (usually called the condenser) that 
focuses the light created by the source onto the object are included in this 
subsystem. The last lens in the condenser system is shown on the left-hand 
side of Figure 1, along with the wavefront Wi incident on the object. We 
will base our review of illumination systems on whether they are spatially 
coherent or incoherent. Temporal coherence is a secondary concern since the 
sources considered in this review are always stationary (see Section 2). Once 
the responses to all the frequencies in the temporal spectrum of the source 

Figure 1  The four subcomponents of an optical imaging system: illumination, scatter-
ing, collection, and refocusing.
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are found, then the synthesis of the output intensity is simply a matter of 
adding the intensities of the responses at each frequency.

3.1.1  Coherent Illumination
Spatially coherent illumination means that different points on the illumina-
tion beam are fully coherent. This kind of illumination can be created by 
an infinitesimally small light source, or by an atomic process called stimu-
lated emission, as with lasers. Numerical models with varying degrees of 
complication are used to represent coherent beams. The simplest coherent 
illumination method used in numerical modeling is the plane-wave illu-
mination. Being invariant in all but one dimension, the plane wave is one 
of the most basic solutions to Maxwell’s equations, wherein the planes of 
constant phase are all perpendicular to the direction of propagation k̂i. The 
electric and magnetic field vectors of the plane wave are perpendicular to 
each other and k̂i. Individually, the plane wave can approximate a more 
complicated coherent illumination scheme over a very small illumination 
angle θill (Salski & Gwarek, 2009b; Tanev, Tuchin, & Paddon, 2006). Full 
treatments of some of these illumination schemes in large-θill cases have 
also been considered in the literature, albeit with less popularity. This is 
primarily because non-planar coherent beams are often difficult to com-
pute and/or implement numerically. One of the more popular coherent 
illumination beams is the Gaussian beam (Smith, 1997). Although it has an 
approximate closed-form analytical expression that can be used in limited 
cases (Salski, Celuch, & Gwarek, 2010; Salski & Gwarek, 2008, 2009a), it 
is often decomposed into its plane-wave components; resulting in a more 
accurate description than the more limited closed-form expression (Yeh, 
Colak, & Barber, 1982). This method has the additional advantage of per-
mitting the use of efficient and readily available plane-wave algorithms, 
such as the total-field/scattered-field (TF/SF) algorithm in FDTD. Since 
the Gaussian beam is defined at a single frequency, it is readily adapted to 
frequency-domain methods (Huttunen & Turunen, 1995; Wei, Wachters, 
& Urbach, 2007; Wojcik et al., 1991b). However, it can also be used in 
conjunction with the FDTD method in time-harmonic operation (Choi, 
Chon, Gu, & Lee, 2007; Judkins, Haggans, & Ziolkowski, 1996; Judkins & 
Ziolkowski, 1995; Simon & DiMarzio, 2007). The plane-wave spectrum 
(or the angular spectrum) method can also be used to synthesize arbitrary 
coherent illumination beams of non-Gaussian shape (Aguilar & Mendez, 
1994; Aguilar, Mendez, & Maradudin, 2002). A practical example of a 
coherent beam is the electromagnetic field distribution around the focal 
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region of an aplanatic lens excited by a plane wave, derived by Richards 
and Wolf (Richards & Wolf, 1959; Wolf, 1959) using the angular-spectrum 
method. This beam has been used to simulate the coherent illumina-
tion in scanning-type confocal or differential-interference contrast (DIC) 
microscopes (Munro & Török, 2005; Török, Munro, & Kriezis, 2008). An 
extension of this technique to time-domain focused pulses was described in 
(Capoglu, Taflove, & Backman, 2008), which can be used to simulate either 
ultrafast optical pulses (Davidson & Ziolkowski, 1994; Gu & Sheppard, 
1995; Ibragimov, 1995; Kempe, Stamm, Wilhelmi, & Rudolph, 1992; Veetil, 
Schimmel, Wyrowski, & Vijayan, 2006), or stationary broadband systems via 
temporal Fourier analysis. The latter type of systems have recently become 
feasible with the development of white-light laser sources (Booth, Juskaitis, 
& Wilson, 2008; Coen et al., 2002).

The plane-wave illumination is also sufficient when the scatterer under 
consideration is very thin compared to the wavelength and/or the range of 
illumination angles is sufficiently narrow. For example, under the thin-mask 
assumption (see Section 3.2) in photolithography, scattering from any plane 
wave from an arbitrary direction is completely determined by the scattering 
from a plane-wave incident normally on the thin mask. This is because the 
thin mask is assumed to simply impart a position-dependent phase shift on 
the plane wave upon transmission. If the scattered wave is decomposed into 
its angular spectrum (which is continuous if the mask is non-periodic, and 
discrete if it is periodic), it can easily be shown that this angular spectrum 
will rotate in the same direction that the incident plane wave is rotated. 
Therefore, it is only necessary in numerical computation to consider a 
single normally incident plane wave and calculate the “diffracted orders,” 
as the Fourier components of the scattered wave are commonly called in 
photolithography. In passing, it is worthwhile to note that this “angular-
shift invariance” property of the scattered field from a thin mask is a direct 
result of the Fourier relationship between the scattered field near the mask 
and the associated angular spectrum of the scattered field. This can easily 
be seen by comparison to a linear time-invariant (LTI) system, whose effect 
on its input is a multiplication by a transfer function in the Fourier (or fre-
quency) domain. Similarly, the angular-shift invariance of the scattered field 
in the Fourier (or angular) domain is a result of the multiplicative action of 
the mask on the incident field in the spatial domain.

Illumination modeling generally becomes a harder task when the object 
space is multilayered. The total-field/scattered-field (TF/SF) algorithm in 
FDTD has been generalized to handle multilayered spaces (Capoglu & 
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Smith, 2008; Winton, Kosmas, & Rappaport, 2005; Zhang & Seideman, 
2010). The plane-wave TF/SF techniques can be used as building blocks 
for injecting arbitrary coherent beams into a multilayered space, since any 
beam can in principle be decomposed into a plane-wave spectrum.

3.1.2  Incoherent Illumination
The term “incoherent illumination” is traditionally used to designate an 
illumination scheme that exhibits partial spatial coherence over the illu-
mination area. Incoherent illumination occurs when the light source has 
finite spatial extent, with every point on the source radiating in an inco-
herent fashion. This is an adequate model for many natural and artificial 
light sources such as the sun, a xenon arc lamp, or a tungsten filament. 
Incoherence also requires that the excitation source have a finite band-
width, however small it may be. In fact, the converse of this requirement 
(strict monochromaticity) is very hard to achieve, for even the most coher-
ent laser sources have a finite bandwidth.

Perhaps the most prominent incoherent illumination scheme in use 
today is called Köhler illumination (Born & Wolf, 1999; Nolte, Pawley, & 
Höring, 2006, chap. 6), named after August Köhler who designed it in the 
late 1800s. One of the key advantages of this scheme is that it provides 
spatially uniform illumination throughout the sample, regardless of the 
inhomogeneities of the light source. This is accomplished by sending a 
collimated beam on the sample for every infinitesimal point on the light 
source. The details of Köhler illumination are shown schematically in 
Figure 2. The light source on the left of Figure 2 is imaged on the aperture 
stop by an auxiliary lens. The image of the light source on the aperture stop 
acts as a secondary source for the succeeding portion of the system. Unlike 
the original light source, the spatial coherence length on this secondary 

Figure 2  Schematical illustration of Köhler illumination.
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source is not zero; in other words, the secondary source is technically a par-
tially coherent source. Fortunately, if the aperture stop is much larger than 
the size of the diffraction spot (also called the Airy disc) associated with 
the auxiliary lens, there is little accuracy lost if every point on this second-
ary source is also assumed incoherent (Born & Wolf, 1999). The remaining 
analysis of Köhler illumination is always based on this assumption. Two 
rays emanating from each of two mutually incoherent infinitesimal point 
sources L1 and L2 on the light source are shown in Figure 2 by solid and 
dotted lines, respectively. Since the aperture stop is situated at the front focal 
plane of the condenser lens, every point source on the aperture stop creates 
a collimated beam illuminating the object from a different direction. Since 
the secondary point sources on the aperture stop are assumed incoherent, 
these beams are also incoherent. The flat wavefronts created by L1 and L2 are 
denoted by W1 and W2 in Figure 2. The aperture stop limits the angles from 
which the incoherent beams hit the object within an illumination cone, 
defined by θill. In general, the image of the source on the aperture stop 
may be inhomogeneous, therefore the beams hitting the object may have 
different amplitudes. If the source is of uniform intensity, these amplitudes 
are also uniform. The spatial extent of the illumination, on the other hand, 
is controlled by the field stop in Figure 2. Let the field stop be imaged by 
the condenser lens at the plane S at distance d from the back focal plane F, 
as shown in Figure 3. For illustration purposes, the distance d in Figure 3  
is drawn much larger than usual. The field stop is usually at several focal 
lengths in front of the aperture stop, so S is usually pretty close to F. It is 
clearly seen from Figure 3 that the optimum position for the sample is at 
S, since any forward or backward movement of the sample will cause the 

Figure 3  Optimal placement of the sample for spatially uniform illumination.
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elimination of some rays incident from certain directions. As the sample 
is moved away from focus (say to S′), the illumination area gets larger and 
starts blurring at the edges. This undesirable effect is avoided by focusing 
the field stop sharply over the sample at all times.

The annotations “field stop” and “aperture stop” in Figure 2 are based 
on the implicit understanding that the field behind the auxiliary lens (on 
the field stop) is taken as the “source” to be imaged onto the object by 
the condenser system. If the actual physical source on the left-hand side of 
Figure 2 (e.g., a xenon lamp) is considered to be the “source” of the illumi-
nation system, then the plane S in Figure 3 coincides with the exit pupil of 
the condenser. This is because the “field stop” in Figure 2 now acts as the 
aperture stop, and its image (the exit pupil) lies at S. One can therefore say 
equivalently that the optimal position S for the sample is the exit pupil of 
the condenser, if the source is understood to be the actual physical source. 
In photolithography, there might not be any intermediate stops between 
the physical source and the condenser lens, in which case the exit pupil lies 
at the plane of the condenser lens (Goodman & Rosenbluth, 1988; Mack, 
2007; Thompson, Willson, & Bowden, 1994; Tirapu Azpiroz, 2004; Yeung, 
1988).

If the sample is close enough to the center of the illumination area 
on S, the collimated beams can be very well approximated by plane waves. 
In numerical computation, the continuum of mutually incoherent plane 
waves over the illumination cone has to be approximated by a finite 
sum. This is, in effect, a two-dimensional numerical quadrature problem, 
for which unfortunately no universally optimum method exists (Press, 
Flannery, Teukolsky, & Vetterling, 1992). A heuristic and straightforward 
method that is applicable regardless of the actual shape of the source image 
on the aperture stop is an equally spaced arrangement of point sources, 
combined with the midpoint rule (Press et al., 1992). The corresponding 
placement of the plane waves incident on the sample in Figure 3 can be 
found from geometrical optics (Born & Wolf, 1999, Section 10.6.2). Within 
the accuracy of Gaussian optics (small off-axis distances, small angles around 
the axis), every position (µ, ν) on the aperture stop corresponds to a plane 
wave with direction cosines (sx, sy) = (µ/f , ν/f ) at the back focal plane of 
the condenser, where f is the focal length of the condenser. The direction 
cosines are defined as

(13)
sx = sin θ cos φ = cos χ,

sy = sin θ sin φ = cos η,
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in which the angles χ, η, θ, and φ are as shown in Figure 4. The angles θ, φ 
are the usual longitudinal and azimuthal angles in the spherical coordinate 
system centered around the z axis. An equal spacing of point sources on 
the aperture stop results in the equal spacing of the direction cosines (sx, sy) 
at the back focal plane of the condenser. An example of equally spaced 
arrangement of the direction cosines is shown in Figure 5. The maximum 
value that either sx or sy can attain is sin θill, where θill is the illumination 
half-angle in Figure 2. The quantity NAill = n sin θill, where n is the refrac-
tive index of the medium, is called the illumination numerical aperture.

As every plane wave in Figure 5 propagates to the sample plane S (at 
distance d from F  ), it acquires a phase shift that will also be preserved in 
the scattered field due to the linearity of the system. If the intensities of 
the scattered field are of interest (as is the case in Köhler illumination), 

Figure 4  Definitions of certain angles associated with plane-wave incidence.

Figure 5  Equal spacing of plane waves in Köhler illumination. Two orthogonal polariza-
tions (+)  and (x) are shown for each direction of incidence.



İlker R. Çapoğlu et al.14

this extra phase shift will not have any effect on the output because of the 
mutual incoherence of the incident plane waves.

One can quantify the quality of the approximation that results from the 
discrete arrangement of the plane waves in Figure 5. Let us consider quasi-
monochromatic illumination with mean wavenumber k = nk0, where k0 
is the mean wavenumber in free space. Let J(x1, y1; x2, y2) denote the 
mutual coherence function at the sample plane (x, y), which quantifies 
the statistical correlation between two points with coordinates (x1, y1) and 
(x2, y2). As far as second-order quantities (intensity, two-point correlation, 
power-spectral density, etc.) are concerned, the mutual coherence func-
tion J(x1, y1; x2, y2) completely specifies the excitation. Any illumination 
scheme that results in the same J(x1, y1; x2, y2) will yield the same second-
order quantities at the output. For the Köhler-illumination scheme consid-
ered here, J(x1, y1; x2, y2) is given by (Born & Wolf, 1999)

in which xd = x1 − x2, yd = y1 − y2, �ill is the illumination solid angle 
bounded by s2x + s2y < sin2 θill, and the differential solid angle d� is equal to 
dsxdsy/ cos θ. Assuming moderate θill values and neglecting the cos θ term, 
this expression can also be written as

in which P(sx, sy) is equal to unity within the circle s2x + s2y < sin2 θill and 
zero elsewhere. Let us label the discrete directions in Figure 5 with indices 
(m, n), with the direction cosines

The indices m and n can be assumed to run from −∞ to ∞. The discrete 
plane waves should be weighed by (�sx�sy)

1/2 (the square root of the dif-
ferential area in the direction-cosine space), so that the mutual coherence 
function is weighed by the differential area �sx�sy in the direction-cosine 
space. With these weights, the arrangement in Figure 5 results in the fol-
lowing mutual coherence function:

(14)J(x1, y1; x2, y2) = J(xd; yd) =
∫∫

�ill

e−jk(sxxd+syyd) d�,

(15)J(xd; yd) =
∫∫ ∞

−∞
P(sx, sy)e

−jk(sxxd+syyd) dsxdsy,

(16)sxm = m�sx, syn = n�sy.

(17)J ∗(xd; yd) = �sx�sy
∑

m,n

P(sxm , syn)e
−jk(sxm xd+syn yd).
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In Appendix A, it is shown that J ∗(xd; yd) is a sum of shifted copies of the 
original mutual coherence function J(xd; yd):

This is called aliasing in signal processing (Oppenheim, Schafer, & Buck, 
1999). For J ∗(xd; yd) to represent J(xd; yd) in a faithful manner, the shifted 
copies must not overlap, i.e.,

where Wc is defined as the distance (x2
d + y2

d)
1/2 at which J(xd; yd) falls 

below a negligible value. Using (15), a closed-form expression can be found 
for J(xd; yd), with a Wc value of the order of 1/(k sin θill) = 1/(k0NAill). If 
the sample dimension D is larger than Wc, then D must be substituted for 
Wc in (19). Otherwise, the mutual coherence function J ∗(xd; yd) evaluated 
between two most distant points on the sample will be aliased and incorrect.  
A more general form of the non-aliasing condition (19) is therefore

For a stationary broadband excitation, the largest wavenumber k (the small-
est wavelength λ) present in the illumination waveform determines the 
non-aliasing condition (20).

If the illumination numerical aperture NAill is not very large (or the 
scattering object is very thin), one can invoke Hopkins’ approximation 
(Hopkins, 1953), in which case there is no need to consider all the plane 
waves in Figure 5. Under Hopkins’ approximation, the response of the 
scatterer to any plane wave is completely determined by its response to the 
normally incident plane wave. Under even more stringent conditions, this 
response can also be obtained in a very simple manner. More on this will 
be said in Section 3.2. Here, we assume that the response of the object to 
each plane wave in Figure 5 is distinct and needs separate consideration. 
This procedure is commonly known as the source-point or Abbe integration 
(Erdmann & Evanschitzky, 2007; Kirchauer & Selberherr, 1997; Marx, 2007; 
Smith & Mack, 2003; van Haver et al., 2008; Wojcik, Mould, Monteverde, 
Prochazka, & Frank, 1991a; Yang, Milster, Zhang, & Chen, 2010; Zhang, 
Kim, Yang, & Milster, 2010). Since the plane waves in Figure 5 are all 

(18)J ∗(xd; yd) =
∞∑

r=−∞

∞∑

s=−∞
J

(
xd + r

2π

k�sx
; yd + s

2π

k�sy

)
.

(19)�sx <
2π

kWc
, �sy <

2π

kWc
,

(20)�sx <
2π

k max{D, Wc}
, �sy <

2π

k max{D, Wc}
.
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mutually incoherent, a separate simulation should be run for each of them. 
The resulting image intensities (not field values) of each simulation are then 
added to yield the final image intensity (see Section 3.4).

The treatment so far has been for a scalar field. It turns out that two 
orthogonal, mutually incoherent polarizations for the electric field of the 
plane wave can always be chosen for every direction (sx, sy), as will be seen 
shortly. The two polarizations for each plane wave are denoted by + and ×, 
and shown superposed at each (sx, sy) direction in Figure 5. If polarization 
information is critical, these two polarizations should also be simulated 
separately, as they are mutually incoherent. The overall number of simula-
tions is therefore twice the number of direction cosines in Figure 5. This 
brute-force repetition of the entire simulation for incoherent illumination 
is a consequence of the deterministic nature of the numerical methods 
within the scope of our review. A clever, more efficient way of reducing 
this burden may be a topic for future research.

The determination of the two orthogonal, mutually incoherent polar-
ization states for the plane waves in Figure 5 requires the knowledge of 
the polarization properties of the source on the aperture stop. We restrict 
ourselves to sources that exhibit uniform polarization properties through-
out the aperture stop. Denoting the coordinates on the aperture stop as 
(µ, ν), we can express the uniform second-order polarization properties of 
the source using the cross-spectral coherency matrix J(µ, ν; ω) (Born & Wolf, 
1999):

where Eµ, Eν are the tangential components of the electric field on the 
aperture stop, �·� denotes temporal averages (or statistical expectation val-
ues), and exp(jωt) dependence is implicit. Since J(µ, ν; ω) is Hermitian, it 
can be represented as a weighted sum of two orthogonal coherency matri-
ces (Mandel, 1963; Tervo, Setälä, & Friberg, 2004):

subject to A, C, D � 0 and AC = |B|2. This corresponds to decompos-
ing the partially polarized field on the aperture stop into two orthogo-
nal, mutually incoherent, fully polarized fields. The directions of these 

(21)J(µ, ν; ω) =
[

�E2
µ� �EµE∗

ν �
�E∗

µEν� �E2
ν �

]
,

(22)J(µ, ν; ω) =
[

A B

B∗ C

]
+ D

[
C −B

−B∗ A

]
,
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polarization states coincide with the orthogonal eigenvectors of the 
coherency matrix J(µ, ν; ω), and their relative weights are determined by 
the eigenvalues. Explicit formulas for the parameters A, B, C, D can be 
found in Tervo et al. (2004). A, B, C determine the angles and the ellip-
ticity of the two polarization states at each (µ, ν), while D determines the 
relative powers of these components. Once the two orthogonal, mutually 
incoherent polarization states are determined, they should be treated indi-
vidually in separate numerical simulations. The problem is thus reduced to 
fully polarized excitation, in which the electric field on the aperture stop is 
uniformly polarized in a certain direction. Since the general case of ellipti-
cal polarization can be handled as a complex superposition of two linearly 
polarized states, we only consider linear polarization. A good approxima-
tion for the polarization of the resulting plane waves in the back focal plane 
of the condenser can be obtained using the construction in Figure 6. An 
arbitrary point A on the plane of the aperture stop (µ, ν) is shown on the 
left-hand side of the figure. Let B denote the point on the lens such that 
AB is parallel to the optical axis OF. Let α denote the ray emanating from 
A, hitting the lens at B, and intersecting the optical axis at the back focal 
point F. The plane including the ray α and the optical axis OF is called the 
meridional plane, which, in our case, makes an angle φ with the µ axis. The 
key observation is thus: the vector electric field on the rays in the neigh-
borhood of α, which are parallel to α around the focus F, will be almost 
the same as that of the ray α. Therefore, if the illuminated sample at the 

Figure 6  Polarization of the plane wave created by the condenser at focus F due to an 
infinitesimal source at point A on the aperture stop.
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back focal plane at F is confined to a small area with dimensions D ≪ f ,  
the polarization and magnitude of the electric field on the sample at F is 
determined by the ray α. The magnitude of the electric field at F follows 
from the intensity law of geometrical optics. The infinitesimal source at 
A creates a spherical wavefront centered around A. The magnitude of the 
electric field at B due to this source is proportional to |E|/f , where E is the 
strength factor of the ray α, depending only on the magnitude and polariza-
tion of the source at A but not on f. For a more detailed description of the 
strength factor of a ray, see (40) and the following discussion. Let us now 
consider an infinitesimal bundle of rays emanating from A and spread over 
an infinitesimal area around B. These rays are collimated by the condenser 
into a parallel tube of rays intersecting the optical axis around the back 
focal point F. The infinitesimal area subtended by this parallel tube of rays is  
(cos θ) times the infinitesimal area subtended by the ray bundle on the 
other side of the condenser. From the intensity law of geometrical optics 
(Born & Wolf, 1999), it follows that the magnitude of the electric field E′ 
at the back focal point F is given by

The polarization of E′ still remains to be found. Let ψ denote the angle 
that E makes with the meridional plane, as shown in Figure 6. If the angles 
of incidence at every surface of refraction through the lens are small, the 
angle ψ between the electric-field vector on the ray and the meridional 
plane stays constant (Born & Wolf, 1999; Richards & Wolf, 1959). This 
fact has been previously used in similar Köhler-illumination constructions 
(Totzeck, 2001; Yang, Milster, Park, & Zhang, 2010; Zhang et al., 2010), as 
well as the synthesis of a coherent converging light pulse in the FDTD 
method (Capoglu et al., 2008). Apart from the factor cos θ−1/2/f , the 
electric field vector E′ is then a rotation of E by an angle θ around an axis 
perpendicular to the meridional plane (Totzeck, 2001).

An important special case of incoherent Köhler-style illumination is 
when the two orthogonal components Eµ and Eν of the electric field on 
the aperture stop are of equal power and are completely uncorrelated: 
|Eµ|2 = |Eν |2 and �EµE ∗

ν � = �E ∗
µEν� = 0. The source on the aperture 

stop is then said to be natural, or completely unpolarized. The cross-spectral 
coherency matrix J(µ, ν) in (21) is then proportional to the identity 
matrix, which amounts to D = 1 in the decomposition (22). This means 
that the A, B, C values for the decomposition in (22) are not constrained 

(23)|E′| = (cos θ)−1/2|E|/f .
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by anything but the coherency condition AC = |B|2. As a result, the choice 
of the two orthogonal polarization states + and × for each and every plane 
wave in Figure 5 becomes completely arbitrary.

It should be noted that there are other aperture shapes besides the cir-
cular shape in Figure 5 employed in practice. Depending on the geometry 
of the aperture, the discretization scheme for the incidence directions can 
be slightly modified. For example, the annular and quasar-shaped apertures 
commonly employed in photolithography can be accommodated using 
an equal spacing of the incidence angles, rather than the direction cosines 
(Pistor, 2001; Tirapu Azpiroz, 2004). The annular aperture is also a char-
acteristic element of phase-contrast microscopy (Tanev et al., 2009; Tanev, 
Tuchin, & Pond, 2008).

3.2  Scattering
The difficulty of obtaining an exact expression for the light scattered from 
the illuminated object depends on the overall size and refractive-index 
distribution of the object. The simplest scattering geometry results when 
the object is so thin that it can be modeled as a phase object. A phase 
object is completely characterized by its complex transmittance T (x, y) at 
the object plane (x, y), defined as the amplitude and phase imparted upon 
an incident waveform upon its exit on the other side of the object. This 
approximation is a crucial element of the early analytical models of par-
tially coherent imaging (Barouch, Cole, Hollerbach, & Orszag, 1993; Cole, 
Barouch, Hollerbach, & Orszag, 1992a; Cole et al., 1992b; Hopkins, 1951, 
1953; Kintner, 1978), which have been extensively applied to the numeri-
cal modeling of photolithography. Assuming exp(jωt) time dependence, a 
phase object modifies the incident amplitude A−(x, y) on the object plane 
(x, y) by the complex transmittance T (x, y), yielding the transmitted ampli-
tude A+(x, y):

As discussed in Section 3.1.1, this is equivalent to the thin-mask assumption 
in photolithography. For thicker masks, the validity of this approximation 
may become questionable. However, some rigor can be maintained in this 
case by calculating only the response A0

+(x, y) of the thick mask to a nor-
mally incident plane wave, and approximating the response at other inci-
dence directions (sx, sy) by angularly shifted versions of A0

+(x, y) (Erdmann, 
Evanschitzky, Citarella, Fuhner, & De Bisschop, 2006; Guerrieri, Tadros, 

(24)A+(x, y) = T (x, y)A−(x, y).
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Gamelin, & Neureuther, 1991; Lucas, Tanabe, & Strojwas, 1996; Pistor, 
2001; Wong, 1994; Wong & Neureuther, 1994, 1995; Wong, Guerrieri, & 
Neureuther, 1995):

This approximation can be applied if the angular dimensions of the source 
as seen from the object are very small, and the rays incident on the object 
are nearly vertical. This is true for the optical systems in photolithography, 
where illumination NAs of ∼ 0.1 (θill ∼ 4 − 5◦) are quite common (Yeung, 
Lee, Lee, & Neureuther, 1993) (see Section 3.4, Figure 14(a)).

If the refractive-index contrast between the scatterer and the surr
ounding medium is very small, then the total electromagnetic field inside 
the scatterer can be approximated in the first order by the incident field, 
resulting in the Born approximation, or the weak-scattering approximation. 
This approximation was first used by the German physicist Max Born 
(1882–1970) in his analysis of atomic particle scattering. It has since found 
application in other areas where the scattering is also governed by wave 
equations, such as electromagnetics and optics (Born & Wolf, 1999; Chew, 
1990; Ishimaru, 1999).

In many situations of practical interest, the phase-object assumption (24)  
or the weak-scattering approximation is not valid. Even if the angular-shift 
invariance property (25) is assumed to hold, the response A0

+(x, y) of the 
object to a normally incident plane wave needs to be calculated using more 
rigorous methods. If the spatial features of the scattering object are much 
larger than the wavelength, ray-based geometrical-optics methods (Lam, 
2005; Lam & Neureuther, 2004) or the first-order physical-optics approxi-
mation (Yeung & Neureuther, 1995) may be used. For objects consisting 
of a small number of sharp edges that do not give rise to much resonance 
or multiple scattering, asymptotic high-frequency solutions based on the 
physical theory of diffraction (PTD) may also yield satisfactory results 
(Tirapu Azpiroz, 2004). However, if the scattering object has key struc-
tural details comparable in size to the wavelength of the incident light, 
ray-based or asymptotic methods completely fail to describe the scattering 
process. Some examples of the latter are biological cells, photonic crystals, 
and phase-shift masks in lithography. In this situation, one has no other 
choice but to seek an approximate numerical solution to the Maxwell’s 
equations (1)–(4). In the following, we will present a brief overview of the 
numerical methods used in the solution of Maxwell’s equations. This over-
view is by no means a complete account of all the numerical methods in 

(25)A+(x, y) = A0
+(x, y)e−jk(sxx+syy).
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electromagnetics; but is rather a preliminary introduction to the methods 
that have been applied to the modeling of optical imaging systems.

An approximate numerical solution to Maxwell’s equations starts 
with the expansion of the electromagnetic field into a set of basis funct
ions. Maxwell’s equations (either in differential or integral form) are then 
transformed into algebraic equations involving the coefficients of this 
expansion. Depending on the characteristics of the basis functions used in 
the expansion, the numerical solution method can take a wide variety of 
forms. A fundamental distinction can be made between numerical meth-
ods that use basis functions that have global or finite support. In the former 
case, the basis functions are nonzero over the entire problem geometry or 
a significant portion of it. The resulting numerical method is commonly 
called a modal method. When the basis functions have finite support, they 
are defined over a small enough region of the geometry that resolves the 
spatial (or temporal) features of the scattering object. This type of numerical 
method is referred to as a finite method.

3.2.1  Modal Methods
Modal methods usually result in an infinite series or an infinite matrix 
problem, which is solved approximately by truncation. Although they 
require less computational power than finite methods, their application is 
very much limited to simple (usually planar and periodic) materials. Modal 
methods are also the oldest and most established ones, with a large body 
of analytical literature since Maxwell’s time. A comprehensive review of all 
modal methods in electromagnetics is far beyond the scope of this paper. 
Here, we will only present an introductory survey of the most common 
methods in existence.

Several representative examples of scattering structures that are amen
able to modal numerical analysis are shown in Figure 7. In all subfigures, 
a 2D medium is assumed with period d in the x direction. The extension 
to 3D is straightforward, as it introduces no conceptual novelty. Interested 
readers will find relevant information in the references. The scattering 
medium is divided into three planar regions, indexed from 0 to 2 from top 
to bottom. Without much loss of generality, the uppermost region (with 
index 0) is assumed to be free space, and the lowermost region (with index 
2) is assumed to have homogeneous relative permittivity ǫ2. The inhomoge-
neous permittivity in region 1 is denoted by ǫ(x, z). In Figure 7(a), a planar 
grating is shown with equi-permittivity lines ǫ(x, z) = [const.] forming 
parallel straight lines at an angle φ with the x axis. If the slant angle φ = 90◦ 
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and ǫ(x, z) is piecewise continuous in x, the lamellar (or laminar, binary) 
grating in Figure 7(b) is obtained. A more general distribution of ǫ(x, z) 
results in the surface-relief grating shown in Figure 7(c) with surface profile 

(a)

(b)

(c)

(d)

Figure 7  Examples of periodic structures that can be analyzed using modal methods. 
(a) Planar grating with slanted permittivity fringes. (b) Lamellar planar grating. (c) Two-
layered surface-relief grating. (d) Inhomogeneous surface-relief grating.
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z = a(x). An even more general permittivity distribution is represented by 
the structure in Figure 7(d). Although the structures in Figure 7(b) and (c) 
are special cases of that in Figure 7(d), the numerical approaches for dealing 
with them, as well as their respective applications, may be quite different.

Let us assume monochromatic excitation with time dependence 
exp(jωt), and a TE polarized plane wave (electric vector perpendicular to 
the grating, parallel to the y axis) incident at an angle θ with respect to 
the z axis. Maxwell’s equations in regions 0, 1, and 2 then reduce to the 
following second-order Helmholtz equations for the y component of the 
electric field Ey:

where ∇2 = (∂2/∂x2) + (∂2/∂z2), k{0,2} = (ω/c)ǫ
1/2
{0,2} are the wavenum-

bers in regions 0 and 2, respectively. From Floquet’s theorem (Peterson, Ray, 
& Mittra, 1998), the periodicity of the scattering region 1 limits the electric 
field Ey0, Ey2 in regions 0 and 2 to a discrete sum of plane waves

in which Rp and Tp are the reflection and transmission coefficients for the 
pth Floquet mode with lateral wavenumber βp:

and the perpendicular wavenumbers result from βp as

In the above, the negative and positive signs are chosen for ρp and τp, respec-
tively, if βp > k0 or βp > k2. The plane-wave expansions in (29) and (30) 

(26)∇2Ey0 + k2
0Ey0 = 0,

(27)∇2Ey1 + k2
0ǫ(x, z)Ey1 = 0,

(28)∇2Ey2 + k2
2Ey2 = 0,

(29)Ey0 = e−jk0(x sin θ−z cos θ) +
∞∑

p=−∞
Rpe

−j(βpx+ρpz),

(30)Ey2 =
∞∑

p=−∞
Tpe

−j(βpx+τpz),

(31)βp = k0 sin θ − p
2π

d

(32)ρp =
√

k2
0 − β2

p ,

(33)τp =
√

k2
2 − β2

p .
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are also called Rayleigh expansions. All modal numerical methods follow the 
same route up to this point. It is in the representation of the electric field 
in the inhomogeneous region 1 and the expression of the boundary con-
ditions at z = 0 and z = −h that various modal methods differ from each 
other. The coupled-wave method (Kogelnik, 1969; Moharam & Gaylord, 
1981) is the most prominent and flexible method, capable of handling a 
multitude of periodic-structure types. In its most basic form, the coupled-
wave method is applicable to gratings of the type shown in Figure 7(a) with 
straight, slanted, and parallel equi-permittivity lines ǫ(x, z) = [const.]. The 
lateral period d is related to the slanted fringe period � by d = �/ sin φ. 
The grating vector is defined as

where K = 2π/�. At the heart of the coupled-wave formulation is the 
expansion of the electric field in region 1 in the infinite series

where r = xx̂ + zẑ and

The x component of σ p is dictated by the phase-matching condition at 
z = 0 and z = −h, while the z component is chosen to yield simpler 
forms for the equations to follow (Moharam & Gaylord, 1983). Upon 
substitution of (35) into the Helmholtz equation (27), it is found that 
the z-dependent coefficients Sp(z) with different p are coupled into each 
other through an infinite set of ordinary second-order differential equat
ions in z. Thanks to the judicious choice of the z component in (36), the 
resulting differential equations have constant coefficients. In general every 
component Sp(z) in the expansion is coupled with every other component 
Sp−i(z), i = ±1, ±2, . . . Minimum coupling occurs when the permittiv-
ity fringes vary sinusoidally, in which case Sp(z) is coupled only to Sp±1(z) 
(Moharam & Gaylord, 1981). The constant-coefficient set of coupled dif-
ferential equations involving the waves Sp(z) can be put into a matrix form. 
First, the vector state variable S is defined as follows:

(34)

K = Kxx̂ + Kzẑ

= K sin φx̂ + K cos φẑ,

(35)Ey1 =
∞∑

p=−∞
Sp(z)e−jσ p·r,

(36)σ p = βpx̂ − pKzẑ.

(37)S(z) =
[
S1(z)

S2(z)

]
,
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where S1(z) and S2(z) are the column vectors of Sp(z) and dSp(z)/dz. 
The coupled differential equations involving Sp(z) then take the matrix 
form

in which the infinite matrix B is independent of z. Its elements are related 
simply to the parameters of the geometry. In practice, the expansion (35) is 
approximated by a finite sum of N modes, resulting in a 2N × 2N  matrix 
B. The resulting finite-dimensional differential matrix equation (38) is then 
decoupled by projecting S(z) onto the 2N  eigenvectors wm of B, yielding 
the solution

where qm is the eigenvalue corresponding to the eigenvector wm. The 
coefficients Cm of this expansion, as well as the reflection and transmission 
coefficients Rp and Tp, are determined from the boundary conditions at 
z = 0 and z = −h ensuring the continuity of the tangential electric field 
Ey and magnetic field Hx. The N unknown reflection coefficients Rp, N  
unknown transmission coefficients Tp, and 2N  unknown expansion coef-
ficients Cm add up to 4N  unknowns. On the other hand, two continuity 
equations at z =  0 and z = −h, each involving N modes, result in 4N  
equations in total. The number of equations thus equals the number of 
unknowns.

There is another modal formulation that is intimately related to the 
coupled-wave analysis, based on an eigenmode expansion (also called coor-
dinate separation or separation of variables) of the fields inside region 1 
(Burckhardt, 1966; Chu & Kong, 1977; Kaspar, 1973; Noponen & Turunen, 
1994). Within the context of planar gratings of the form shown in Figure 
7(a), this method is completely equivalent to the coupled-wave analysis 
(Gaylord & Moharam, 1982; Magnusson & Gaylord, 1978). The only dif-
ference here is that the field inside region 1 is represented in terms of the 
allowable modes of the periodic medium, which was not imposed a priori 
in (35). This makes the coupled-wave formulation slightly less complicated, 
and often the preferred method. Because of their equivalence, the coupled-
wave and eigenmode approaches are sometimes both referred to as the 
Fourier-modal method in more recent literature (Ichikawa, Masuda, & Ueda, 
2009; Li, 1997; Vallius, 2002; Vallius & Turunen, 2006).

(38)
d

dz
S(z) = BS(z),

(39)S(z) =
2N−1∑

m=0

Cmwmeqmz,
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If the permittivity profile has a rectangular cross-section as in Figure 
7(b), the coupled-wave method is the simplest and fastest modal solution 
method (Knop, 1978; Lee & Degertekin, 2004; Moharam & Gaylord, 1986; 
Moharam, Grann, Pommet, & Gaylord, 1995). The piecewise-constant 
permittivity profile also allows an exact eigenmode analysis inside region 
1 without recourse to an infinite Fourier expansion (Botten, Craig, 
McPhedran, Adams, & Andrewartha, 1981; Tayeb & Petit, 1984). The gen-
eral surface-relief profile can also be approximated as a finite stack of lamel-
lar gratings using a staircase approximation as shown in Figure 8 (Chateau 
& Hugonin, 1994; Moharam & Gaylord, 1982; Popov, Neviere, Gralak, & 
Tayeb, 2001).

There is a modal method that is especially suitable for the analysis of 
the surface-relief structure in Figure 7(c), called the Chandezon method, 
or the C-method (Chandezon, Dupuis, Cornet, & Maystre, 1982; Cotter, 
Preist, & Sambles, 1995; Li, 1999). The method is also applicable to mul-
ticoated gratings with layer interfaces positioned at z = a(x) − Li, where 
Li, i = 1, 2, . . . are a monotonically increasing sequence of positive con-
stants. In this method, the interface curves z = a(x) − Li are mapped to 
parallel lines by a coordinate transformation, and Maxwell’s equations are 
then solved in the planar multilayered medium in the new coordinate sys-
tem. For gratings with homogeneous layers separated by smooth interfaces, 
the C-method outperforms the coupled-wave method paired with the 
staircase approximation of the surface-relief profile (Li, Chandezon, Granet, 
& Plumey, 1999). Even for discontinuous permittivity profiles, some algo-
rithmic improvements can enable the C-method to yield comparable per-
formance to the coupled-wave method (Vallius, 2002).

For the most general permittivity profile in Figure 7(d), the coupled-
wave expansion in (35) is still valid. However, the resulting equations for 
Sp(z) are much more complicated. They are still an infinite set of coupled 
ordinary differential equations for Sp(z), but their coefficients are no lon-
ger independent of z. The most direct approach is to solve these equations 

Figure 8  The surface-relief grating approximated by a finite stack of lamellar gratings.
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directly using numerical quadrature. This approach, called the differential 
method, was first introduced by Nevière for studying the diffraction from 
surface-relief gratings (Neviere, Vincent, & Petit, 1974). Although its for-
mulation is very general, the differential method has mostly been applied 
to homogeneous gratings with smooth profiles (Maystre & Neviere, 1978; 
Popov & Bonod, 2007; Popov & Neviere, 2000). The numerical difficul-
ties associated with the direct quadrature solution of variable-coefficient 
coupled differential equations are rather formidable. On the other hand, 
the differential method is evidently superior to staircase-based approximate 
methods for smooth permittivity profiles (Popov et al., 2001). The latter 
methods suffer from serious convergence issues due to sharp local maxima 
at the ridges of the staircase profile.

One of the pioneering applications of modal methods to the simula-
tion of optical imaging was reported by Nyyssonen (1982). This study is 
in fact one of the earliest applications of rigorous Maxwell’s-equations-
based analyses of the imaging of complex objects without the thin-film 
approximation. In this work, the eigenmode variation of the coupled-wave 
method was applied to optical edge detection. It has also found use in 
modeling integrated-circuit/grating/mask inspection (Nyyssonen & Kirk, 
1988; Sheridan & Sheppard, 1993; Totzeck, 2001; Yang, Milster, Zhang,  
et al., 2010; Yuan & Strojwas, 1991b; Zhang et al., 2010), surface profilom-
etry (Gale, Pether, & Dainty, 1996; Huttunen & Turunen, 1995), and defect 
detection (Rafler, Schuster, Frenner, Osten, & Seifert, 2008). The coupled-
wave method was readily adopted and heavily used by the photolithogra-
phy community, where it is more commonly referred to as the waveguide 
method. It has been used for mask modeling (Erdmann et al., 2006; Kundu, 
Mathur, & Gupta, 1986; Lucas et al., 1996; Lucas, Yuan, & Strojwas, 1992), 
line-width measurement (Davidson, 1999; Kundu et al., 1986; Yuan, 1992; 
Yuan & Strojwas, 1991a), and alignment (Nikolaev & Erdmann, 2003; Yuan, 
1992; Yuan & Strojwas, 1991a).

The modal methods mentioned so far have been designed to handle 
periodic, infinite structures. There are also some modal methods that are 
applicable to spatially bounded, aperiodic scatterers. The most popular 
modal method for an isolated scatterer is the Mie solution for electromag-
netic wave scattering from a sphere (Born & Wolf, 1999), later generalized 
to multiple spheres (Xu, 1995). Modal methods are only suitable for scat-
terers that have highly symmetric shapes such as spheres, ellipsoids, planar 
sheets, etc., that have a straightforward geometric representation in a rea-
sonably simple coordinate system (Yang, Taflove, & Backman, 2011).
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3.2.2  Finite Methods
Finite numerical methods can be broadly separated into two categories: 
differential-equation and integral-equation methods. Differential-equation 
methods are based on the direct discretization of the differential form of 
Maxwell’s equations inside a volumetric solution space. Two prominent 
approaches in this category are the finite-difference (FD) and finite-
element (FE) methods. In the FD approach, the field values are placed on 
regular (frequently Cartesian) grids in such a way that Maxwell’s divergence 
equations (3) and (4) are automatically satisfied. Such “divergence-free” 
grids prevent the emergence of late-time instabilities in time-domain 
methods, and spurious modes in frequency-domain methods (Teixeira 
& Chew, 1999). The simplest and most famous divergence-free grid was 
developed by Yee (1966), and set the basis for the widely popular finite-diff
erence time-domain (FDTD) method (Taflove, 1980; Taflove & Hagness, 
2005). The most desirable property of the FDTD method is its ease of 
implementation. In its most basic form, the fields are updated in time using 
a simple leapfrog updating procedure, without any matrix inversions. In 
more complicated time-domain FD schemes, as well as frequency-domain 
FD schemes (called FDFD), matrix inversions may become necessary. In 
most cases, however, the leapfrog updating scheme of the FDTD method 
is preferred due to its simplicity and intuitiveness. The FDTD method also 
has the advantage of yielding direct time-domain data, allowing immedi-
ate broadband analysis. In spite of their simplicity, the regular FD grids can 
be overly restrictive when local mesh refinement or conformal gridding 
is required. Furthermore, staircase approximations have to be made for 
modeling curved surfaces in regular FD grids. When these constraints are 
too stringent, one might prefer to use highly irregular triangular meshes 
that allow a much finer discretization of round surfaces and much easier 
mesh refinement. In spite of the latitude they offer in representing different 
geometries, irregular grids require much more effort to ensure the consis-
tency and stability of the numerical solution algorithm. Collectively, these 
algorithms are referred to as finite-element (FE) methods. The acronym 
“FEM” is commonly used in electromagnetics (Jin, 2002). Although they 
can be regarded as more general and less limiting than FD methods, they 
are considerably more difficult to implement. Finite-element formulations 
always involve the solution of a large matrix equation with the field values 
in the three-dimensional volume as the unknowns. Fortunately, the matrix 
is always sparse, banded, and in many cases, symmetric. A considerable part 
of the difficulty in implementing FE algorithms lies in solving this system 



The Microscope in a Computer 29

of equations efficiently, while avoiding spurious modes. As mentioned 
above, spurious modes arise when there are inconsistencies in the construc-
tion of the grid. Consistency in a FE scheme can be expressed as a combi-
nation of two conditions: a divergence-free topological construction of the 
grid, and preservation of the reciprocal nature of the continuum Maxwell’s 
equations (Teixeira & Chew, 1999). Although frequency-domain problems 
constitute the majority of FE applications, time-domain FE variants also 
exist (Teixeira, 2008). There are even time-domain FE formulations featur-
ing explicit time-updating schemes like the FD methods; however, this 
feature comes with its own disadvantages (Lee, Lee, & Cangellaris, 1997). 
FD and FE methods share some inherent drawbacks that are a result of 
their very construction. Since both methods operate on field values in a 
finite volume, they require auxiliary techniques for handling sources that 
radiate in an unbounded region. Many so-called “absorbing boundary 
conditions” (ABCs) have been developed for truncating the FD and FE 
solution spaces (Taflove & Hagness, 2005). These conditions emulate the 
extension of the simulation grid to infinity by absorbing most of the energy 
incident on the outer boundary of the grid. The most popular ABC in use 
today is Berenger’s “perfectly matched layer” (Berenger, 1994), which con-
stitutes a milestone in the development of differential-equation methods. 
Grid dispersion and grid anisotropy are two other major problems caused 
by the finite size of the grid voxels and their lack of rotational symmetry. 
These problems can never be completely eliminated, but can be partially 
alleviated by choosing finer spatial steps and/or employing more rotation-
ally symmetric discretization schemes (Taflove & Hagness, 2005). Hybrid 
algorithms have been proposed for merging useful features of FD and FE 
methods. For example, the hybrid FDTD-FEM method described in Wu 
and Itoh (1997) makes use of both the simplicity of the FDTD method and 
the power of the finite-element method in modeling curved surfaces. This 
hybrid method was used in Yeung and Barouch (1999) to model curved 
mask surfaces in photolithography.

An integral-equation method operates on an equivalent integral 
equation that completely embodies the differential form of Maxwell’s 
equations and the associated boundary conditions, including the ones at 
infinity (Chew, 1990; Peterson et al., 1998). Barring a few exceptions, 
integral-equation methods are used mainly to solve the frequency-domain 
Maxwell’s equations (5)–(8). The integral equation is typically expressed 
on a two-dimensional boundary that separates two homogeneous material 
regions, with the unknowns representing the field values on the boundary. 
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Consequently integral-equation methods are sometimes referred to as 
“boundary integral” (or “boundary element”) methods. The reduction in 
the dimensionality of the problem allows for a much finer spatial discreti-
zation. However, the applicability of integral-equation methods is limited 
to geometries consisting of piecewise-homogeneous material regions 
for which the Green’s function is at least conceptually available in each 
homogeneous region. Consequently, integral-equation methods cannot 
be applied when nonlinear or highly inhomogeneous materials exist in 
the problem geometry. For the latter case, volume-integral equations can 
be formulated (Chew, 1990); however, these are less common. An alterna-
tive method is to adopt a finite-element or a finite-difference discretiza-
tion scheme inside the inhomogeneous regions and an integral-equation 
method outside these regions, with boundary conditions to tie these 
regions together (Kotlyar & Nesterenko, 2001; Mirotznik, Prather, & Mait, 
1996; Prather, Shi, & Sonstroem, 2002).

The primary difficulty associated with an integral-equation method is 
the necessity of solving a dense matrix system whose diagonal elements 
include singular integrals. Usually, some iterative method with an accelera-
tion algorithm such as the fast multipole method (FMM) is used for solving 
this system (Coifman, Rokhlin, & Wandzura, 1993). On the other hand, 
integral-equation methods have the distinct advantage that the radiation 
boundary conditions are inherent in their formulation, rendering absorbing 
boundary conditions unnecessary. Furthermore, integral-equation meth-
ods do not suffer from some discretization artifacts that are inherent to 
differential-equation methods such as grid dispersion and grid anisotropy.

With the widespread availability of powerful computational resources, 
rigorous numerical approximations to Maxwell’s equations reached and 
surpassed the analytical series solutions in popularity. Among these, the 
FDTD method seems to have gained wider acceptance than others primar-
ily because it is conceptually simpler, physically more intuitive, and easier to 
implement. One of the earliest applications of FDTD to numerical imag-
ing is UC Berkeley’s TEMPEST software developed for photolithography 
simulation (Guerrieri et al., 1991). Originally designed to handle 2D mask 
patterns, it was later generalized to 3D (Wong, 1994; Wong & Neureuther, 
1994; Wong et al., 1995) and further enhanced to handle extreme-ultra
violet (EUV) photolithography simulation (Brukman, Deng, & Neureuther, 
2000; Pistor, 2001; Pistor, Adam, & Neureuther, 1998; Pistor & Neureuther, 
1999a, 1999b). In addition to its initial purpose of simulating the scatter-
ing response of photomasks (Adam & Neureuther, 2002; Tirapu Azpiroz, 
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2004), TEMPEST has also been used for simulating metrology (Tadros, 
Neureuther, & Guerrieri, 1991) and alignment systems (Deng, Pistor, & 
Neureuther, 2001; Yin et al., 2000). The FDTD method has also found use 
in modeling microscopy modalities. The earliest work on this subject began 
with the simulation of near-field imaging modalities such as the near-field 
scanning optical microscope (NSOM) (Furukawa & Kawata, 1996; Krug, 
Sanchez, & Xie, 2002; Simpson & Hanna, 2001; Symons, Whites, & Lodder, 
2003; Vasilyeva & Taflove, 1998a, 1998b). Far-field microscopy modeling 
was later tackled by the incorporation of ray principles and diffraction 
formulas from optics into the solution algorithm (Capoglu et al., 2011; 
Hollmann et al., 2004; Török et al., 2008). Upon suitable modification of 
the optical far-field data, different modalities such as differential-contrast 
microscopy (DIC) (Munro & Török, 2005), phase-contrast microscopy 
(Tanev, Tuchin, et al., 2008), and confocal microscopy (Salski & Gwarek, 
2009a; Simon & DiMarzio, 2007) can be handled. A novel algorithm based 
on the extended Nijboer–Zernike (ENZ) theory of diffraction (see Section 
3.4) was coupled with FDTD for photomask imaging (Janssen et al., 2008; 
van Haver et al., 2008) and the imaging of general 3D objects (van Haver, 
Braat, Janssen, Janssen, & Pereira, 2009). A variant of the FDTD method, 
called the pseudo-spectral time-domain (PSTD) method (Liu, 1997), is par-
ticularly suited to the analysis of scattering from optically large structures, 
such as macroscopic biological tissue (Tseng, 2007).

FE methods have found less usage than FD methods in simulating opti-
cal imaging systems. As mentioned above, this is primarily due to the diff
iculty of implementation. On the other hand, if geometrical flexibility is a 
crucial requirement in the spatial discretization of the scattering object, a 
FE method may be a viable option. An explicit time-domain FE scheme has 
been used to simulate the optical imaging of cylindrical dielectric objects 
on silicon surfaces (Wojcik, Vaughan, & Galbraith, 1987), integrated-circuit 
line features (Wojcik et al., 1991a), alignment marks (Wojcik et al., 1991b), 
and phase-shifting masks (Wojcik, John Mould, Ferguson, Martino, & Low, 
1994). Frequency-domain FE methods were applied to various complex 
diffracting structures (Lichtenberg & Gallagher, 1994; Wei et al., 2007). The 
ease of mesh refinement in FE discretization has led to adaptive approaches 
to the modeling of optical diffractive devices (Bao, Chen, & Wu, 2005).

Among all the rigorous numerical solution methods for optical scatter-
ing, FD and FE methods clearly dominate. Still, there may be certain situ-
ations where an integral-equation method is the best choice for solving an 
optical scattering problem. For example, if the near field in the vicinity of 
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the scattering structure is very intense, absorbing boundary conditions for 
FD or FE methods may get too cumbersome or numerically intensive. In 
this case, the implicit radiation condition provided by an integral equation 
becomes a handy feature. However, integral-equation methods can only be 
effectively used in optical problems where the scattering structure is homo-
geneous or piecewise homogeneous. Consequently, their usage has been 
limited to the numerical simulation of optical scattering from relatively 
simple diffractive structures. Some examples are dielectric-coated gratings 
(Botten, 1978; Kleemann, Mitreiter, & Wyrowski, 1996; Maystre, 1978), 
diffractive lenses (Prather, Mirotznik, & Mait, 1997), and integrated-circuit 
structures (Aguilar & Mendez, 1994; Aguilar et al., 2002; Marx, 2007).

It is a trade-off between the accuracy requirements and the resource 
constraints that determines the numerical method best suited to a problem. 
For guidance, one can consult benchmark studies that compare multiple 
numerical methods for a given application (Besbes et al., 2007; Erdmann, 
Fuhner, Shao, & Evanschitzky, 2009; Nikolaev & Erdmann, 2003; Vallius & 
Turunen, 2006; Wojcik, Mould, Marx, & Davidson, 1992).

3.3  Collection
After the scattering from the sample is calculated, the scattered field should 
be propagated to the image plane to complete the imaging process. These 
two steps are commonly performed by an objective. As shown diagrammati-
cally in Figure 1, the first task of the objective is to collect the portion 
of the light scattered from the sample that falls within its entrance pupil. 
The entrance pupil is defined as the image of the limiting aperture stop as 
seen from the object side. Among all the aperture stops in the system, the 
one that limits the angular extent of the rays emanating from the object is 
the limiting aperture (Born & Wolf, 1999). In general, the entrance pupil 
can be located at any finite distance from the sample. However, it is more 
advantageous to place the entrance pupil at infinity whenever possible. 
Such a system is referred to as object-side telecentric (Born & Wolf, 1999). In 
a telecentric system, the size of the blurred image does not change as the 
object moves out of focus. This is a very desirable feature in both micros-
copy and photolithography. In the former, telecentricity makes it easier to 
manually focus on a sample, as the image size does not change with defo-
cus. In the latter, telecentricity is much more crucial, for it ensures that the 
image of the photomask is much less sensitive to positioning tolerances. 
In addition to its advantages, telecentricity poses its own difficulties. First 
of all, it should be remembered that the limiting aperture stop should be 
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located at the back focal plane of the optical system preceding it. If the 
lateral dimension of a certain lens in the optical setup is not large enough, 
that lens could act as the limiting aperture and destroy telecentricity. For 
this reason, telecentricity usually requires that the lenses have much larger 
lateral dimensions than the sample, resulting in more expensive equipment. 
This is usually not a big issue for microscopes. However, telecentricity 
places a more stringent constraint on photolithography projection lenses in 
terms of both price and performance. Almost all modern microscopes and 
photolithography projection lenses are telecentric on the object side. We 
will assume object-side telecentricity in the following analysis.

The collection geometry for an object-side telecentric system is shown 
in Figure 9. Since the entrance pupil is at infinity, the scattering object can be 
regarded as a point at O, and the scattered wavefront Ws is spherical. The con-
ventional spherical coordinates (r, θ, φ) are defined with respect to O and the 
z axis chosen to coincide with the optical axis. The far zone (also called the 
Fraunhofer or radiation zone) is defined as the region r ≫ d2/λ where d is the 
maximum dimension of the sample and λ is the wavelength. In the far zone, 
the radial dependence of the field can be factored out, and the wavefront Ws is 
completely specified by its angular profile (Harrington, 2001; Stratton, 2007):

Here, k = nk0 is the wavenumber in the homogeneous space between 
the object and the entrance pupil, and n is the refractive index of the 
same homogeneous space. The vector quantity Es(θ, φ) in (40) is called 
the strength factor of the ray associated with the far-zone direction (θ, φ) 

(40)Es(r, θ, φ) = Es(θ, φ)
e−jkr

r
.

Figure 9  The collection geometry for a telecentric system.
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(Kline & Kay, 1979; Richards & Wolf, 1959). The collection step therefore 
reduces to numerically calculating the strength factor Es(θ, φ) at various 
observation directions. Depending on the scattering geometry, this may be 
accomplished in several different ways. One common property of almost all 
numerical collection methods is that the near-field information is used to 
obtain the far-zone field using certain theorems of electromagnetics. The 
term near-field-to-far-field transform (NFFFT) is commonly used for such an 
algorithm that computes the far field from the near field. All NFFFT algo-
rithms rely on either spatial Fourier analysis or a Green’s-function formal-
ism. We will examine these two cases separately.

3.3.1  Fourier Analysis
In certain cases, the strength factor Es(θ, φ) can be found using the spatial 
Fourier transform of the near field around the scatterer. This near field 
should be given on an infinite planar surface S between the scatterer and 
the entrance pupil, as shown in Figure 10. Let us define the origin O on S 
and denote the vector electric field on this plane as E(x, y). The far-zone 
field Es(r, θ, φ) on the wavefront Ws at the entrance pupil can be found by 
expanding E(x, y) into its plane-wave (or angular) spectrum, and propagat-
ing it to very large r using the steepest-descent method (Smith, 1997). Let 
us define the plane-wave spectrum of the 2D electric-field distribution 
E(x, y) as the following Fourier-transform operation

(41)Ẽ(kx, ky) =
∫∫ ∞

−∞
E(x, y)ej(kxx+kyy) dxdy

Figure 10  The collection geometry for a Fourier-analysis-based near-field-to-far-field 
transform. The near fields should be given on an infinite planar surface S between the 
scatterer and the entrance pupil.
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with the inverse transform (or the plane-wave representation)

It is understood in (41) and (42) that the Fourier transform is applied to 
the Cartesian components of the vector integrands separately. The repre-
sentation (42) for the vector field E(x, y) is an infinite summation of plane 
waves (propagating and evanescent) whose lateral propagation coefficients 
are (kx, ky). This plane-wave representation can be used to extrapolate the 
electric field to the region above the plane S, i.e., z > 0. The following 
field satisfies the boundary condition (42) at z = 0 and Maxwell’s equations 
(5)–(8) in the region z > 0:

with kz = (k2 − k2
x − k2

y)
1/2 (Smith, 1997). Here, k is the wavenumber 

ω/c in the homogeneous space between S and the entrance pupil. Only 
the plane-wave components in (42) with k2

x + k2
y < k2 will contribute to 

the far field; because a complex kz represents an evanescent plane wave 
decaying exponentially in z. Now, propagating the plane waves with 
k2

x + k2
y < k2 into the space z > 0 and using the steepest-descent method 

at the far zone, one arrives at the following formula for the strength factor 
Es(θ, φ) (Smith, 1997):

where the θ and φ components are given by

in which Ẽx(kx, ky) and Ẽy(kx, ky) are the x and y components of the 
plane-wave spectrum Ẽ(kx, ky) in (41), and the definition

has been introduced for brevity. This expression can be put into a more 
compact vectorial form. The electric-field divergence equation (7) in free 

(42)E(x, y) = 1

(2π)2

∫∫ ∞

−∞
Ẽ(kx, ky)e

−j(kxx+kyy) dkxdky.

(43)E(x, y, z) = 1

(2π)2

∫∫ ∞

−∞
Ẽ(kx, ky)e

−j(kxx+kyy+kzz) dkxdky,

(44)Es(θ, φ) = Eθ (θ, φ)θ̂ + Eφ(θ, φ)φ̂,

(45)Eθ (θ, φ) = jk

2π

[
Ẽx(α, β) cos φ +Ẽy(α, β) sin φ

]
,

(46)Eφ(θ, φ) = jk

2π
cos θ

[
−Ẽx(α, β) sin φ +Ẽy(α, β) cos φ

]
,

(47)(α, β) = (k cos φ sin θ, k sin φ sin θ)
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space (ρ = 0) applied to (43) will quickly reveal that Ẽ(kx, ky) is transverse 
to the propagation vector k̄ = kxx̂ + kyŷ + kzẑ. It follows that the vector 
Ẽ(α, β) only possesses θ̂ and φ̂ components. Expanding Ẽx and Ẽy in (45)
and (46) in terms of Ẽθ and Ẽφ, it is readily found that

We will now show how the expressions (44)–(48) can be used in different 
scattering geometries to calculate the strength factor Es(θ, φ) numerically.

The simplest scattering geometry results when the sample is a phase 
object, represented by a complex transmittance T (x, y) (see Section 3.2). 
This concept can be generalized to vector fields by assuming that the 
complex transmittance acts on the tangential component of the incident 
field. The normal component is then determined by the transversality 
property k̄ · Ẽ(kx, ky) = 0. The phase-transmittance property suggests 
that the plane S in Figure 10 be defined immediately above the sample, 
opposite the illumination side. If the incident field is a unit-amplitude 
plane wave

the tangential component of the transmitted field on the plane S is given by

where ax, ay are the x and y components of the incident unit polarization 
vector â. The plane-wave spectrum of the vector field in (50) is given by

where ̃T (kx, ky) is the 2D Fourier transform of the complex transmittance 
T (x, y) according to (41). The frequency-shift property of the Fourier 
transform was used in deriving the above expression from (50). Substituting 
(51) in (45), (46), we obtain the following expression for the θ and φ com-
ponents of the strength factor Es(θ, φ):

(48)Es(θ, φ) = jk cos θ

2π
Ẽ(α, β).

(49)Ei(x, y, z) = âe−jk(γxx+γyy+γzz),

(50)
E

�
+(x, y) = Ex(x, y, 0+)x̂ + Ey(x, y, 0+)ŷ

= e−jk(γxx+γyy)T (x, y)(axx̂ + ayŷ),

(51)Ẽ
�
+(kx, ky) = T̃ (kx − kγx, ky − kγy)(axx̂ + ayŷ),

(52)

Eθ (θ, φ) = jk

2π
T̃ (α − kγx, β − kγy)

×
[
ax cos φ + ay sin φ

]
,
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If the object is not sufficiently thin, the model can be improved by calculat-
ing the response E 0

+(x, y) of the object to a normally incident plane wave 
by some rigorous method and obtaining the responses to other incidences 
perturbatively from E 0

+(x, y). As mentioned in Section 3.2, this approach 
is viable only if the illumination and collection NAs are very small (Yeung  
et al., 1993). Such an assumption is often valid in photolithography, but not 
microscopy (Totzeck, 2006) (see Figure 14). Let us assume that E 0

+(x, y) is 
the response to an x-polarized unit-amplitude plane wave. The correspond-
ing response to a y-polarized plane wave can be added to the final result 
in the general case and is omitted here for brevity. Under the perturbation 
assumption, the tangential response to an x-polarized off-axis plane wave 
becomes

With this assumption, (52) and (53) become

where Ẽ
0
x+(kx, ky) and Ẽ

0
y+(kx, ky) are the 2D Fourier transforms of 

E 0
x+(x, y) and E0

y+(x, y).
When neither the thin-film assumption in (50) nor the perturbation 

assumption in (54) is valid, the scattered electric field E(x, y) on the plane S 
and its plane-wave spectrum Ẽ(kx, ky) should be calculated using rigorous 
numerical methods detailed in Section 3.2 for a given incident beam. If a 
modal method is employed (see Section 3.2.1), the plane-wave spectrum 
Ẽ(kx, ky) is obtained directly, eliminating any need for 2D Fourier transform.  
Since the z = 0+ plane in Figure 7 is between the scattering structure and 
the entrance pupil, it can be chosen as the collection plane S in Figure 10. 

(53)

Eφ(θ, φ) = jk

2π
T̃ (α − kγx, β − kγy)

× cos θ
[
−ax sin φ + ay cos φ

]
.

(54)E
�
+(x, y) = (E0

x+(x, y)x̂ + E0
y+(x, y)ŷ)e−jk(γxx+γyy).

(55)

Eθ (θ, φ) = jk

2π

[
Ẽ

0

x+(α − kγx, β − kγy) cos φ

+Ẽ
0

y+(α − kγx, β − kγy) sin φ

]
,

(56)

Eφ(θ, φ) = jk

2π
cos θ

[
−Ẽ

0

x+(α − kγx, β − kγy) sin φ

+Ẽ
0

y+(α − kγx, β − kγy) cos φ
]
,
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The second term on the right-hand side of (29) is the scattered electric 
field on S for TE illumination:

with the equally spaced Floquet wavenumbers βp = k sin θi − p(2π/d), 
in which d is the lateral period of the structure and θi is the longitudinal 
incidence angle of the excitation plane wave. Comparing (57) with (42), 
it is seen that the reflection coefficients Rp play the role of the plane-wave 
spectral coefficients ̃E(kx, ky),while βp play the role of kx. One difference is 
that Rp is a finite set of numbers unlike ̃E(kx, ky) because of the periodicity 
of the structures in Figure 7. Another difference is that Rp is defined for a 
2D geometry that is invariant in y. If the scattering structure is periodic in 
both x and y with periods dx and dy, the scattered field should be expressed 
as a doubly infinite sum of vector-valued Floquet modes Rpq (Maystre & 
Neviere, 1978):

where now the Floquet wavenumbers

play the roles of kx and ky, respectively. Here, φi and θi are the spherical 
incidence angles of the incident plane wave. Comparing this expression 
with (42), the plane-wave spectrum Ẽ(kx, ky) can be written in terms of 
Rpq as follows:

where δ(·) is the Dirac delta function. Substituting this expression in (48), 
the strength factor Es(θ, φ) is obtained as

(57)Ey(x) =
∞∑

p=−∞
Rpe

−jβpx,

(58)E(x, y) =
∞∑

p=−∞

∞∑

q=−∞
Rpqe

−j(βpx+βqy),

(59)
βp = k cos φi sin θi − p(2π/dx),

βq = k sin φi sin θi − q(2π/dy)

(60)Ẽ(kx, ky) = (2π)2
∞∑

p=−∞

∞∑

q=−∞
Rpqδ(kx − βp)δ(ky − βq),

(61)Es(θ, φ) = (jk2π cos θ)
∑

p

∑

q

Rpqδ(α − βp)δ(β − βq).
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Carrying the term cos θ = (1 − (α/k)2 − (β/k)2)1/2 inside the summation 
and using the properties of the delta function, this can be written as

in which cpq is the dimensionless cosine parameter

It is seen that the far-zone field is nonzero only at a discrete set of direc-
tions. This is a direct result of the periodicity of the system, and the dis-
creteness of the Floquet wavenumbers βp, βq. Second, the finite range of 
the variables α = k cos φ sin θ, β = k sin φ sin θ between 0 and k sin θobj 
(where sin θobj is the collection NA in Figure 9) only allows for a finite 
number of observation directions to be collected by the objective. It is easy 
to see that any Floquet mode Rpq with p index higher than a maximum 
value pmax will not be collected by the objective, where

The same concept applies to the q index. For the best reconstruction of 
the scattered field at the image plane, pmax should be maximized. This can 
be accomplished by reducing the wavelength λ or increasing the collection 
NA sin θobj. On the other extreme, if pmax is less than 1, only the homoge-
neous zeroth-order mode (p = 0) propagates to the objective, resulting in 
a uniform image (see Section 3.4, specifically Figure 16).

For finite numerical methods (see Section 3.2.2), it is not the diffracted 
orders Rpq but the electromagnetic field E(x, y) that is directly available. 
If an integral-equation method is used, the collection algorithm is usu-
ally based on a Green’s-function formalism (see Section 3.3.2). Collection 
algorithms based on Fourier analysis are more widely used in conjunction 
with differential-equation methods such as FDTD or FEM. One difficulty 
associated with using Fourier analysis in differential-equation methods is 
that the computational grids are always bounded in space. Since Fourier 
analysis requires that the near field be given on an infinite planar surface, 
the range of applications for Fourier-based collection algorithms is severely 
limited. One broad category of problems that falls within this range is those 
that employ periodic boundary conditions. In such problems, both the simula-
tion geometry and the incident beam are constrained to be periodic along 
a certain direction or two orthogonal directions. The electromagnetic field 

(62)Es(θ, φ) = (jk2π)
∑

p

∑

q

cpqRpqδ(α − βp)δ(β − βq),

(63)cpq =
√

1 − (βp/k)2 − (βq/k)2.

(64)pmax =
d sin θobj

λ
.
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on an infinite lateral plane (parallel to the direction of periodicity) is there-
fore determined completely by the electromagnetic field in the finite grid. 
This allows the use of Fourier analysis for the collection of the far-zone 
field. It is sufficient to consider the simpler 2D case in order to illustrate the 
concept of periodic boundary conditions. Some examples of 2D periodic 
structures are shown in Figure 7. Let us assume a unit-amplitude TE plane-
wave incident from angle θi with respect to the z axis, with y component

in which γx = sin θi and γz = cos θi. The spatial period of the structure is d;  
therefore, the Floquet theorem (Peterson et al., 1998; Taflove & Hagness, 
2005) says that the electromagnetic field obeys the following pseudo-
periodicity condition everywhere:

The linear phase term exp(−jkγxd) is enforced by the incident plane wave 
and becomes unity for normal incidence. The incorporation of periodic 
boundary conditions to a frequency-domain finite-element scheme is 
pretty straightforward. Assuming that the lateral dimension of the FEM 
grid is equal to the spatial period d, the pseudo-periodicity condition (66) 
is imposed at the opposite boundaries of the grid:

If the periodicity is along two directions, the same condition applies between 
the “back” and “front” boundaries as well, with γyy instead of γxx. There is no 
extra conceptual difficulty introduced by the pseudo-periodicity condition 
(67), although there may be numerical issues regarding the efficient construc-
tion of the resulting matrix (Mias, Webb, & Ferrari, 1999; Sukumar & Pask, 
2009). There are much larger implementation obstacles for time-domain 
methods such as FDTD, which will not be reviewed here. For a good review 
on periodic boundary conditions in FDTD, the reader may consult Taflove 
and Hagness (2005).  A newer method for enforcing periodic boundary con-
ditions in FDTD can be found in Lee and Smith (2006). Let us assume that 
the vector field E(x, y) scattered from a 3D object has been computed on 
the plane S (see Figure 10) using some finite numerical method at equally 
spaced spatial points m�x and n�y, resulting in the discrete array E[m, n]:

(65)Ei
y(x, z) = e−jk(γxx−γzz),

(66)Ey(x + d, z) = Ey(x, z)e−jkγxd .

(67){E, H}right = {E, H}lefte
−jkγxd .

(68)
E[m, n] = E(m�x, n�y), m = 0 . . . M − 1,

n = 0 . . . N − 1
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and the entire periods in both x and y are covered by the sampling:

We will now describe how the vector amplitudes of the Floquet modes in 
(58) can be obtained by using two-dimensional discrete Fourier transform 
(DFT). Expressing the results in terms of DFT is always advantageous, since 
there exists a very efficient algorithm for the evaluation of the DFT called 
the fast Fourier transform (FFT). We first define the phase-shifted sampled 
array Ē[m, n] as follows:

The phase shift above depends on the direction of incidence (θi, φi) of the 
excitation plane wave. This shift removes the phase condition (66) imposed 
by the incident plane wave and simplifies the resulting expression consid-
erably. The 2D DFT of this modified array is conventionally defined as 
(Bracewell, 1986; Oppenheim et al., 1999)

It can be shown (see Appendix B) that the DFT array ˜̄E[p, q] is related to 
the Floquet modes Rpq as follows:

Equation (72) expresses the results of the 2D DFT operation on the phase-
shifted sampled field array Ē[m, n] in terms of the Floquet modes Rpq of the 
original, continuous field E(x, y). From (72), we can immediately draw some 
key conclusions. First of all, the DFT array ˜̄E[p, q] is seen to be equal to an 
infinite summation of shifted copies of Rpq in both p and q indices. In other 
words, ˜̄E[p, q] is an aliased version of Rpq. In order for ˜̄E[p, q] to represent 
Rpq faithfully, the shifted copies of Rpq should not overlap. This requires that 
the shifting periods M and N be larger than the effective widths Wp and Wq 
of Rpq in the p and q indices:

(69)M�x = dx, N�y = dy.

(70)Ē[m, n] = E[m, n]ejk sin θi(dx cos φi
m
M +dy sin φi

n
N ).

(71)˜̄
E[p, q] =

M−1∑

m=0

N−1∑

n=0

Ē[m, n]e−j2π(
pm
M + qn

N ).

(72)˜̄
E[p, q] = MN

∞∑

r=−∞

∞∑

s=−∞
Rp+rM ,q+sN .

(73)M > Wp, N > Wq,
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which, using (69), can also be written in terms of the sampling periods as

If M or N is too small, shifted copies of Rpq overlap, and Rpq cannot be 
recovered fully from ˜̄E[p, q] If both M and N are large enough so that 
neighboring replicas of Rpq do not overlap, Rpq can be recovered from 
˜̄
E[p, q] using the relationship (72):

for a range of p, q values around p = q = 0. Some simple estimates for the 
effective widths Wp and Wq of Rpq can be made in certain circumstances. 
For example, if the plane S is far enough above the periodic structure, the 
evanescent Floquet modes in (58) become negligible, and it is only neces-
sary to consider the propagating modes. Using the propagation conditions 
|βp| < k and |βq| < k, the following expressions are obtained for Wp and Wq:

Substituting these expressions into (74), we obtain

This is, in effect, a discrete version of the celebrated Nyquist sampling theo-
rem for bandlimited signals (Oppenheim et al., 1999). It states that if only 
propagating modes are present on the plane S, the spatial sampling periods 
need only be smaller than half the wavelength.

Fourier-analysis-based NFFFTs have the advantage that they do not 
require separate treatment for multilayered media. This is because the 
sampling plane S lies above the scattering structure and any stratification 
over which it might be situated. However, these methods have their own 
difficulties. The most important of these is the requirement that the field 
be specified on a laterally infinite plane S. It was shown in the foregoing 
discussion that this is a surmountable problem if the scattering structure is 
periodic in space. A Fourier-analysis-based NFFFT might still be feasible 
even for non-periodic structures if both the scattered field and the reflec-
tion of the incident field from the interfaces are bounded in space. Then, 

(74)�x <
dx

Wp

, �y <
dy

Wq

.

(75)Rpq = 1

MN
˜̄
E[p, q]

(76)Wp = 2
dx

λ
, Wq = 2

dy

λ
.

(77)�x <
λ

2
, �y <

λ

2
.
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the collection surface S can in principle be made large enough to cover 
them. Nevertheless, the preferred method for non-periodic structures 
remains the Green’s-function formalism explained in the next subsection.

3.3.2  Green’s-Function Formalism
If the scattering medium is not periodic, the Fourier-analysis-based 
approaches of the previous subsection have very limited use. The preferred 
method for a non-periodic scatterer is usually based on a Green’s-function 
formalism, which operates by applying certain integral theorems to the 
near fields on a closed surface surrounding the scatterer and computes the 
far field by the finite approximation of these integrals. The geometry of a 
Green’s-function NFFFT is shown in Figure 11(a). The scattering (or radi-
ating) structure A is enclosed in a closed surface S, on which the tangential 
and normal components of the electric and magnetic fields are assumed 
to be known. The tangential components are denoted with a subscript t, 
whereas the normal components are denoted with n. If an integral-equa-
tion method is used in the scattering step, the result is usually the tangential 
components of the electromagnetic field on the surface of the scattering 
structure A. Therefore, the surface S can be assumed to coincide with the 
surface of A, and the following discussion is still valid. Without much loss 

(a)

(b)

Figure 11  Pictorial description of a Green’s-function near-field-to-far-field transform 
(NFFFT). (a) The geometry of the NFFFT. The scattering structure A is enclosed in a 
closed surface S. (b) Equivalent surface currents on S, with the interior of S removed.
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of generality, we will assume that a differential-equation method has been 
employed in the scattering step, and the surface S is some arbitrary surface 
surrounding A. The most prominent method for obtaining the radiated 
far field in terms of the near fields on S is the vector-potential formula-
tion, wherein the near fields are first converted to equivalent electric and 
magnetic surface currents on S using the surface equivalence theorem (Balanis, 
1989; Chen, 1989; Harrington, 2001). The derivation of this theorem is 
quite lengthy, so it will not be reproduced here. The interested reader may 
consult the references. However, the result of the theorem is very simple 
and is shown in Figure 11(b). The equivalent electric and magnetic surface 
currents M t and J t are now radiating in free space, without the scatterer 
A inside the NFFFT surface S. The removal of A is justified because the 
equivalent surface currents M t and J t create a null field inside S. The rela-
tionship between the equivalent surface currents M t and J t and the elec-
tromagnetic field on S is quite simple:

in which n̂ is the outward normal unit vector shown in Figure 11(a). Notice 
that only the tangential components of the electric and magnetic fields are 
needed for this formulation. Once the equivalent currents are placed on S 
and the interior region of S is filled with free space (or the homogeneous 
material outside S), the fields radiated by these currents can be found using 
a variety of methods. In the vector-potential method, the currents are first 
inserted into certain integrals that yield intermediate quantities called the 
vector potentials. Among several slightly different conventions for their 
definitions, we will follow that of (Balanis, 1989). The vector potentials are 
obtained from the surface currents as follows:

in which A(r) and F(r) are called the electric and magnetic vector poten-
tials, respectively. The primed coordinates r′ represent the source points on 
S, while the unprimed coordinates r represent the observation points. The 

(78)M t = E × n̂ = Et × n̂,

(79)J t = n̂ × H = n̂ × H t,

(80)A(r) = µ0

4π

∫∫

S

J t(r
′)

e−jk|r−r′|

|r − r′| dr′,

(81)F(r) = ǫ0

4π

∫∫

S

M t(r
′)

e−jk|r−r′|

|r − r′| dr′,
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electric and magnetic fields at the observation point r result from the foll
owing differentiation operations on the vector potentials:

In the near field, the evaluation of (80)–(83) can be extremely complicated. 
However, considerable simplification occurs when the observation point 
approaches infinity ( |r| → ∞), which is the far-zone region we are interested 
in. In the far zone, the |r − r′| term in the exponential in (80) and (81) can be 
approximated as (r − r̂ · r′), where r̂ = r/r = (cos φ sin θ, sin φ sin θ, cos θ) 
is the unit vector in the direction of observation, while the |r − r′| term 
in the denominator can be approximated as r. This results in the following 
far-zone expressions for the vector potentials:

As a result of the far-zone approximation, the r dependence in (84) and 
(85) is completely factored out, and the surface integrals only depend on 
the observation angles θ, φ. The differentiation relations (82) and (83) also 
assume simpler forms for large r if the terms that decay faster than 1/r are 
neglected. Expanding the ∇ operator in the spherical coordinates (r, θ, φ) 
and neglecting 1/r2 and higher terms, (82) and (83) simplify to

(82)E(r) = −jω

[
A + 1

k2
∇(∇ · A)

]
− 1

ǫ0

∇ × F,

(83)H(r) = −jω

[
F + 1

k2
∇(∇ · F)

]
+ 1

µ0

∇ × A.

(84)A(r) = µ0
e−jkr

4π r

∫∫

S

J t(r
′)ejkr̂·r′ dr′

(85)F(r) = ǫ0
e−jkr

4π r

∫∫

S

M t(r
′)ejkr̂·r′ dr′.

(86)Er = 0,

(87)Eθ = −jω(Aθ + η0Fφ),

(88)Eφ = −jω(Aφ − η0Fθ ),

(89)Hr = 0,

(90)Hθ = jω

η0

(Aφ − η0Fθ ),

(91)Hφ = − jω

η0

(Aθ + η0Fφ),
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where η0 = (µ0/ǫ0)
1/2 is the wave impedance of free space. The far-

zone electric and magnetic fields are transverse (r̂ · E = 0, r̂ · H = 0) and 
orthogonal to each other (η0H = r̂ × E).

Within the context of finite numerical methods, the term “near-field-
to-far-field transform” is usually reserved for the implementation of the 
formulas (84)–(91). The frequency-domain NFFFT described above was 
first incorporated into the finite-difference time-domain (FDTD) method 
by Umashankar and Taflove (1982) and Taflove and Umashankar (1983). A 
time-domain version of the vector-potential NFFFT in three dimensions 
was developed later (Luebbers, Kunz, Schneider, & Hunsberger, 1991; Yee, 
Ingham, & Shlager, 1991). For a good review of these methods, the reader 
is referred to Taflove and Hagness (2005).

Despite the assumption in the beginning of this section that the collec-
tion system is telecentric on the object side and the entrance pupil lies at 
infinity (see Figure 9), we digress briefly to introduce another numerical 
collection algorithm that is extremely convenient for non-telecentric cases. 
Commonly referred to as the Stratton–Chu formulation, it operates directly 
on the tangential and normal fields on S [see Figure 11(a)] without any 
intermediate vector potentials. Its derivation, based on vector versions of 
Green’s identities, proceeds very similarly to that of the surface equivalence 
principle. For details, the reader may consult (Stratton, 2007; Stratton & 
Chu, 1939; Török, Munro, & Kriezis, 2006). Although the derivation is 
quite lengthy, the result is pretty simple. The electric and magnetic fields 
anywhere outside the closed surface S in Figure 11(a) are given by

Here, G(r, r′) = exp(−jk|r − r′|)/4π |r − r′| is the free-space Green’s func-
tion, and the gradient operator ∇′ operates on the source coordinate r′. 
The Stratton–Chu formula (92) and (93) for the field outside S is actually 
a combination of the vector-potential formulas (80)–(83), with the differ-
entiation operator ∇ carried inside the surface integrals. If one is interested 
in the asymptotic far-zone field that decays as 1/r, it is more efficient to use 

(92)

E(r) =
∫∫

S

[
(n̂ · E)∇′G(r, r′)

−jωµ0(n̂ × H)G(r, r′) + (n̂ × E) × ∇′G(r, r′)
]

dS′,

(93)

H(r) =
∫∫

S

[
(n̂ · H)∇′G(r, r′)

+jωǫ0(n̂ × E)G(r, r′) + (n̂ × H) × ∇′G(r, r′)
]

dS′.
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the vector-potential formulas (84)–(91) instead of the asymptotic form of 
the Stratton–Chu formula (92) and (93), because the latter requires extra 
operations on the normal field components. In the near field, however, the 
Stratton–Chu formulation has more superior numerical properties. Since 
the ∇′ operator only acts on the Green’s function G(r, r′), it can be evalu-
ated in closed form:

in which r̂d is the unit vector (r − r′)/|r − r′|. If the wavelengths present in 
the illumination are much smaller than the distance between the scatter-
ing object and the entrance pupil, then the second term in square brackets 
in (94) can be neglected. Note that this expression depends both on the 
source coordinate r′ and the observation coordinate r, therefore it does 
not result in a full decoupling of the r dependence unlike (84) and (85). 
Nevertheless, the differentiation operator ∇′ is analytically evaluated, which 
simplifies the numerical implementation of (92) and (93) significantly. The 
presence of second-order differentiation operators in the vector-potential 
formulation (82) and (83) renders the numerical implementation of the 
near-field-to-near-field transform more tedious and impractical. The price 
paid by choosing the more convenient Stratton–Chu formulation is the 
extra computation and/or storage requirements imposed by the normal 
components (n̂ · E), (n̂ · H) of the field on S. The Stratton–Chu formula-
tion has been used to calculate the collected light in coherent microscopes 
(Munro & Török, 2005; Török et al., 2008) and photolithography systems 
(Janssen et al., 2008; van Haver et al., 2009) where the entrance pupil is 
assumed to be situated at a finite distance.

Near-field-to-far-field transforms based on Green’s-function formalisms 
pose a difficulty when the scattering object A in Figure 11(a) is radiating 
in a planar multilayered medium. In this case, the equivalent surface cur-
rents J t, M t in Figure 11(b) do not radiate in free space; therefore, the 
free-space Green’s function G(r) = exp(−jkr)/4π r cannot be used. Instead, 
the appropriate Green’s functions associated with the multilayered medium 
should be used in (80) and (81) as well as (92) and (93). In the near field, 
obtaining exact expressions for these Green’s functions can be an extremely 
complicated task (Felsen & Marcuvitz, 1994; Michalski & Mosig, 1997). In 
the far zone, however, closed-form analytical expressions of these Green’s 
functions may be found. Frequency-domain NFFFT algorithms for the 

(94)∇′G(r, r′) = jk
e−jk|r−r′|

4π |r − r′|

[
1 − j

k|r − r′|

]
r̂d,
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FDTD analysis of multilayered media were introduced in Demarest, Huang, 
and Plumb (1996) and Martin and Pettersson (2001). A direct time-domain 
FDTD NFFFT was later developed for a three-layered medium (Capoglu, 
2007; Capoglu & Smith, 2006). A more general and stable formulation of 
the frequency-domain NFFFT was developed by Capoglu, Taflove, and 
Backman (2012). Spatial Fourier-transform methods have also been used 
to obtain the far-zone field in FDTD (Janssen et al., 2008; van Haver et al., 
2009) and finite-element simulations (Wei et al., 2007). The transmission-
line formulation used in Capoglu and Smith (2006) and Capoglu (2007) and 
the spatial Fourier-transform method operate on the same basic principles.

In imaging applications, the far field (86)–(91) has to be calculated at 
multiple observation directions (θ, φ) in order to construct the final image. 
The choice of these observation directions is more obvious in the Fourier-
based NFFFT of the previous subsection. If the scattering is calculated 
using a modal method, the Floquet modes Rpq in (58) contain all the neces-
sary information regarding the far-zone scattered field. For a finite method 
applied to a periodic structure, the 2D discrete Fourier-transform opera-
tion of the phase-shifted sampled field Ē[m, n] in (70) was shown to contain 
sufficient information regarding the far-zone scattered field, provided the 
sampling is fine enough to satisfy (74) or (77). In a Green’s-function-based 
NFFFT, however, the choice of the observation directions is not immedi-
ately obvious. It is evident that a discrete arrangement of observation direc-
tions (similar to that of the incoherent plane waves constituting Köhler 
illumination in Figure 5) is needed. Two different arrangements of obser-
vation directions are shown in Figure 12. In Figure 12(a), the direction 
cosines (sx, sy) = (cos φ sin θ, sin φ sin θ) are equally spaced, resulting in a 
Cartesian distribution of observation directions in the (sx, sy) space. The loss 
of rotational symmetry in φ can be mitigated by increasing the number of 
points. Alternatively, a rotationally symmetric arrangement can be obtained 
by parametrizing the region inside the circle s = (s2x + s2y)

1/2 < sin θobj by 
the polar coordinates (ρ, φ), such that

with the ranges

Applying Gaussian quadrature in ρ (Bochkanov & Bystritsky, 2008; Press 
et al., 1992) and maintaining equal spacing in φ, the discrete arrangement 
in Figure 12(b) is obtained. Note that the rotational symmetry is preserved, 

(95)sx = ρ cos φ, sy = ρ sin φ

(96)− sin θobj < ρ < sin θobj, −π/2 < φ < π/2.
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but there is an inhomogeneity in the density of points inside the collec-
tion numerical aperture. In Section 3.4, the respective advantages of the 
arrangements in Figure 12(a) and (b) will be seen more clearly.

For the Cartesian arrangement in Figure 12(a), there is an upper limit 
for the spacings �sx, �sy of the direction cosines if the resulting image is 
to be constructed accurately. Here, we will merely note this limit and defer 
its derivation until Section 3.4. Consider the scatterer A in Figure 11(a). It 
is obvious that the scattered electromagnetic field will be stronger near the 
scatterer A and will gradually decay to zero away from it. Let us define an 
area of dimensions Wx and Wy around the scatterer A, outside which the 
scattered electromagnetic field can be assumed negligible. An area having 
dimensions several times the dimensions of the scatterer Lx and Ly will usu-
ally be sufficient. Given the dimensions Wx, Wy of the “nonzero-field” area, 
the condition for the image to be constructed without loss of information is

This implies that a larger scatterer requires a finer sampling of the far-
zone electromagnetic field. In a sense, this relation is dual to (77), which 
describes the condition for the reconstruction of the far-zone field from 
the sampled near field.

(97)�sx <
2π

kWx
, �sy <

2π

kWy
.

(a) (b)

Figure 12  Two types of discrete arrangements for far-zone observation directions 
in a numerical imaging application. (a) Equal spacing of direction cosines (sx, sy) = 
(cos φsin θ, sin φsin θ). (b) Polar representation (sx, sy) = (ρcos φ, ρsin φ), followed by 
Gaussian quadrature in –sin θobj < ρ < sin θobj  and equal spacing of – π/2 < φ < π/2.
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There is a subtle complication that arises in the collection step when 
either the incident beam or the reflection of this beam from the planar 
multilayers (if applicable) falls within the angular collection range of the 
objective. The former case may happen in transmission-mode microscopy 
or photolithography, where the illumination and scattering happen on 
opposite sides of the object. The latter case will happen in reflection-
mode microscopy, if part of the beam reflected from the layer interfaces is 
within the collection numerical aperture. This is usually less of a problem 
for a Fourier-based collection scheme because it is the total field that is 
observed on the planar surface S of Figure 10, including the incident or 
reflected beams. The real problem arises when a Green’s-function-based 
scheme is used with near-field information on a closed surface S as in 
Figure 11(a). Almost invariably, the near field on S is only the scattered field. 
The incident field is calculated only as an excitation term either inside the 
scattering regions (called the pure-scattered field-formalism—used both  
in FDTD (Taflove & Hagness, 2005) and FEM (Jin, 2002)) or inside a ficti-
tious surface surrounding the scatterer (called the total-field/scattered-field  
(TF/SF) formalism—used mostly in FDTD). In the TF/SF formalism, the 
fictitious surface should be inside the NFFFT surface S. Otherwise, the 
imbalance between the magnitudes of the incident and scattered fields will 
cause larger numerical errors in the scattered field. For this reason, the inci-
dent or reflected beam should be treated separately from the scattered field 
and propagated individually through the collection and refocusing system. 
This will be discussed further at the end of Section 3.4.

3.4  Refocusing
Since we are only concerned with real images that can be projected on 
a  recording medium, the final step of the imaging process involves the 
refocusing of the rays collected from the scatterer onto an image plane. The 
collection and refocusing steps in Figure 1 are reproduced schematically in 
Figure 13 for convenience. The entrance and exit pupils of the system are 
images of each other with respect to the collection-refocusing optics in the 
middle. The direction-cosine variables (sx, sy) and (s′x, s′y) are used to param-
etrize the entrance and exit pupils. The object and the image are centered 
around O and O′, and the angles subtended by the entrance and exit pupils 
at O and O′ are denoted by θobj and θimg. The refractive indices of the object 
and image spaces are n and n′, respectively. Allowing arbitrary n and n′ can be 
useful for modeling liquid-immersion lenses. Two Cartesian coordinate sys-
tems are defined with respect to the origins O and O′, having common z and 
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z′ axes along the optical axis OO′. The x, y and x′, y′ axes are anti-parallel, i.e., 
x′ = −x and y′ = −y. In the following, unprimed and primed coordinates 
are used to denote variables in the object and image spaces, respectively.

In Section 3.3, the assumption of telecentricity was made in the object 
space, meaning that the entrance pupil is at infinity. In Figure 13, a ray α 
is shown entering the entrance pupil at angles (θ, φ). This ray traverses 
the collection-refocusing system, leaving the exit pupil at angles (θ ′, φ′). 
Assuming that the collection-refocusing system is rotationally symmetric, 
the ray stays on the meridional plane (defined by the ray α and the line 
OO′). This requires that the azimuthal angles are equal: φ′ = φ. We will 
only consider a subclass of optical systems that satisfy the Abbe sine condition 
(Barrett & Myers, 2004; Born & Wolf, 1999; Kingslake, 1978) between the 
sines of the ray angles θ and θ ′ at the entrance and exit pupils:

(98)
n sin θ

n′ sin θ ′ = M =
NAobj

NAimg

,

Figure 13  An illustration of the general geometry of the collection and refocusing 
optics.
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where M is a constant that is a characteristic of the collection-refocusing 
system. In (98), NAobj and NAimg are the collection and imaging numerical 
apertures defined as NAobj = n sin θobj and NAimg = n′ sin θimg, respectively. 
Up to the first order in off-axis distances, this constant is equal to the nega-
tive of the lateral magnification of the imaging system (Born & Wolf, 1999). 
The negative sign is a consequence of the fact that the imaging geometry 
in Figure 13 always results in an inverted image. The constant M will be 
called “magnification” in the following, bearing in mind that the actual lat-
eral magnification is (−M ). For notational convenience, we define another 
parameter M ′ representing the angular de-magnification:

The Abbe sine condition (98) ensures that aberrations that depend on the 
first power of the off-axis distance of an object point (called circular coma) 
are absent. In other words, it is the required condition for the sharp imag-
ing of points at small off-axis distances. This condition is usually satisfied in 
well-corrected optical imaging systems.

Two opposite situations regarding the lateral magnification M are 
encountered in photolithography and microscopy, as illustrated in Figure 
14 (Totzeck, 2006). In photolithography [Figure 14(a)], a de-magnified 
image of the mask is projected on the photoresist by a projection lens, so 
M < 1 and NAobj < NAimg. De-magnification in photolithography is usu-
ally specified in terms of the “reduction ratio,” defined as the inverse of M 
and notated as (1/M):1. For example, a projection lens with M = 0.2 is said 
to have a reduction ratio of 5:1. The nonlinear response of photoresists in 
modern photolithography demands that the projection lenses be corrected 
for every conceivable aberration well beyond the requirement of simple 
diffraction limited resolution. In microscopy, however, requirements for 
aberration correction are less stringent, and most of the challenge lies with 
the higher NA of the objective lens. The structure of a general microscopy 
system is shown in Figure 14(b). Most modern microscope objectives are 
infinite-conjugate, meaning that the optimum sample position for best 
aberration correction is at the front focal plane of the objective, resulting in 
an image at infinity. This image is brought to a finite position by the tube 
lens, as shown in Figure 14(b). The image-side numerical aperture NAimg 
of a microscope is equal to the object-side numerical aperture NAobj 
divided by the magnification, which can be as high as M = 100. This results 
in very small incidence angles for the rays in the image space, which can be 

(99)M ′ = n′

n
M = sin θ

sin θ ′ .
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handled without much error by inexpensive tube lenses that do not require 
much aberration correction. On the other hand, the microscope objective 
is usually an expensive, well-corrected optical component. This is because 
the maximum object-side ray angle θobj has to be pretty large for good 
imaging resolution. If both the objective and the tube lens satisfy the Abbe 
sine condition (98), the magnification M can also be expressed in terms of 
the focal lengths f1, f2 of the objective and the tube lens. Let us denote 
the height of the marginal ray between the objective and the tube lens by 
h [see Figure 14(b)]. It can be shown that the Abbe sine condition for this 
ray takes the form (Born & Wolf, 1999)

(100)h = f1 sin θobj = f2 sin θimg.

(a)

(b)

Figure 14  Comparison of the collection and refocusing geometries in photolithogra-
phy and microscopy. (a) In photolithography, a de-magnified image of the mask is pro-
jected on the photoresist. Typical values are σ = 0.3–0.8, M = 0.1–0.25. (b) In microscopy, 
a magnified image of the object is projected on the CCD by the objective-tube lens 
combination. Typical values are M = 10–100.
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Using (98), the magnification M is then equal to

The objective/tube lens arrangement in Figure 14(b) provides a way of 
altering the magnification M of the system by changing the focal lengths 
of either the objective or the tube lens. Changing the focal length f2 of the 
tube lens simply makes the image bigger or smaller with no change in reso-
lution. Changing the focal length f1 of the objective amounts to zooming 
into or out of the image with lower or higher resolution. In many micro-
scopes, one cycles through different objectives with different focal lengths 
( f1), effectively changing the magnification (10×, 100×, etc.)

In order to construct the field distribution at the image plane, it is necessary 
to know the properties of all the rays α that leave the exit pupil. The azimuthal 
angles φ, φ′ at the entrance and exit pupils are identical. The polar exit angle 
θ ′ of the rays is given by the Abbe sine condition (98). The strength factor 
E′

s(θ
′, φ′) of the ray at the exit pupil still needs to be found (see (40) for the 

definition of the strength factor.) Let us start with the polarization of E′
s(θ

′, φ′).  
From the laws of geometrical optics, E′

s(θ
′, φ′) lies in a plane perpendicu-

lar to the ray. A good approximation for the polarization can be obtained  
by making the same assumption as in Section 3.1.2, wherein it was argued 
(in reference to Figure 6) that the angle ψ between the electric-field vector 
and the meridional plane remains constant as the ray α traverses the system 
(Born & Wolf, 1999; Richards & Wolf, 1959). This requires that the angles of 
incidence at each refracting surface be small. In highly corrected optical comp
onents with multiple lenses, the deviation of a ray at each surface is minimal; 
therefore, the above assumption is valid. With this assumption, the strength 
factors Es(θ, φ) and E′

s(θ
′, φ′) of the ray α at the entrance and exit pupils 

make the same angle ψ with the meridional plane, as shown in Figure 13.  
The magnitude of E′

s(θ
′, φ′) follows from the intensity law of geometrical 

optics (Flagello, Milster, & Rosenbluth, 1996). Let us track an infinitesimal tube 
of rays containing the ray α in the object and image spaces. These rays emanate 
from the object-side origin O and converge at the image-side origin O ′, see 
Figure 13. If the aberrations of the collection-refocusing system are small, the 
principal radii of curvature of the geometrical-optics wavefront in the image 
space are both approximately equal to the distance r ′ from O ′ (Wolf, 1959). 
The light intensities on the ray α in the object and image spaces are, from (9),

(101)M = n

n′
f2

f1
.

(102)I1 = n|Es|2/(η0r2), I2 = n′|E′
s|2/(η0(r

′)2),
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in which r and r ′ are arbitrary distances from O and O ′, respectively. The 
infinitesimal areas on the spherical wavefronts intersected by the tubes of 
rays are

Assuming that the absorptive, reflective, and refractive losses in the 
collection-refocusing system are negligible, conservation of energy dictates 
that the total powers crossing dS1 and dS2 are equal. Since the total power 
crossing an infinitesimal area dS is (intensity × dS), this is equivalent to the 
intensity law of geometrical optics:

We therefore have

From the Abbe sine condition, n sin θ = M (n′ sin θ ′). Using the chain rule, 
one can write

Also noting that dφ′ = dφ, (105) becomes

If Es(θ, φ) and E′
s(θ

′, φ′) are expressed in spherical coordinates centered 
around O and O′, respectively, a quick inspection of Figure 13 reveals that 
the θ̂ ′ and φ̂′ components of E′

s(θ
′, φ′) are given by

Now, both the directions and the strength factors of the rays leaving the 
exit pupil are determined and we are ready to construct the field at the 
image plane. The final step of the imaging process requires a connection 
between the geometrical-optics field determined by the rays at the exit 

(103)dS1 = r2 sin θdθdφ, dS2 = (r ′)2 sin θ ′dθ ′dφ′.

(104)I1 dS1 = I2 dS2.

(105)|E′
s| = |Es|

√
n sin θ dθdφ

n′ sin θ ′ dθ ′dφ′ .

(106)
dθ

dθ ′ = cos θ ′

cos θ

d(sin θ)

d(sin θ ′)
= M

n′ cos θ ′

n cos θ
.

(107)|E′
s| = M

√
n′ cos θ ′

n cos θ
|Es|.

(108)
E′

s(θ
′, φ′) · θ̂ ′ = −M

√
n′ cos θ ′

n cos θ
Es(θ, φ) · θ̂ ,

E′
s(θ

′, φ′) · φ̂′ = −M

√
n′ cos θ ′

n cos θ
Es(θ, φ) ·φ̂.
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pupil and the electromagnetic field at the image plane z′ = 0. This can be 
achieved by use of vectorial diffraction theory (Kline & Kay, 1979; Török 
et al., 2008; Wolf, 1959). The vector field at the image plane (x′, y′) is given 
by the Debye–Wolf integral:

where k′ = n′k0 is the wavenumber in the image space. A change of 
variables is made from the angle variables (θ ′, φ′) to the direction-cosine 
variables (s′x, s′y):

In (109), �img is the solid angle bounded by θimg, and 
d� = ds′xds′y/s′z = ds′xds′y/ cos θ ′. It is straightforward to show that (Wolf, 
1959) the Debye–Wolf integral in (109) is the “inverse” of the vectorial 
far-field expression (48). The Debye–Wolf integral in (109) can also be 
regarded as an infinite summation of plane waves incident from a spectrum 
of directions (θ ′, φ′). For this reason, it is also called the angular-spectrum or 
the plane-wave representation of the image field.

The range of validity of the Debye–Wolf integral (109) warrants some 
discussion. If the exit pupil is at infinity, then the refocusing system is image-
side telecentric, and the Debye–Wolf integral (109) strictly applies (Sheppard, 
2007). However, if a certain geometrical condition is satisfied, (109) is also 
applicable for an exit pupil at a finite position. In Figure 15, a spherical 
wavefront Wf  passing through the center C of the exit pupil is shown con-
verging toward the focal point O′ at a distance d from the pupil. Let the 
radius of the exit pupil be a and the maximum distance between Wf  and 
the exit pupil be denoted by �max. To a good approximation, �max is equal 
to a2/2d. The Fresnel number NF is a dimensionless quantity defined as �max 
divided by half of the wavelength λ′ in the image space:

The Fresnel number is approximately equal to the number of Fresnel 
zones that fill the aperture when viewed from the focal point O ′ (Born & 
Wolf, 1999). It can be shown (Li & Wolf, 1982; Wolf & Li, 1981) that the 

(109)Eimg(x′, y′) = jk′

2π

∫∫

�
img

E′
s(s

′
x, s′y)e

−jk′(s′xx′+s′yy′)
d�,

(110)(s′x, s′y) = (cos φ′ sin θ ′, sin φ′ sin θ ′).

(111)
NF = �max

λ′/2
≈ a2

λ′d
.
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required condition for the validity of the Debye–Wolf integral (109) is that 
the Fresnel number is very large:

For visible-range optical imaging systems employed in microscopy, pho-
tolithography, metrology, inspection, and alignment, the exit-pupil radius 
a is well on the order of centimeters, so a/λ′ is on the order of 104. The 
ratio a/d of the exit-pupil radius to the pupil distance is equal to tan θimg,  
which may range from 10−2 to infinity, depending on the magnification M. 
Therefore, it can safely be assumed that the Debye–Wolf integral (109) is a 
very accurate representation of the electromagnetic field in the image space 
for a wide range of optical systems.

If the image space is homogeneous, the Debye–Wolf integral in (109) 
gives the final result for the image field. If there is a non-trivial scattering 
topography in the image space such as a CCD or a photoresist, the integral 
(109) for the image field should be considered only as an incident field. The 
calculation methods detailed in Section 3.2 should then be used to comp
ute the scattered field resulting from this incident field. Since plane-wave 
incidence is usually the easiest illumination scheme to handle, the angular-
spectrum interpretation of the Debye–Wolf integral becomes quite handy 
in many cases. The incident field (109) is a coherent illumination beam (see 
Section 3.1.1) that can be written as the sum of plane-wave components

(112)NF ≫ 1.

(113)dEimg(x′, y′) = jk′

2π
E′

s(s
′
x, s′y)e

−jk′(s′xx′+s′yy′)
d�.

Figure 15  The geometrical parameters used in the definition of the Fresnel number NF.
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If the image space is simply a stack of laterally infinite planar layers, each plane 
wave (113) can be propagated into this medium using standard Fresnel refrac-
tion formulas (Bernard & Urbach, 1991; Flagello et al., 1996; Tang et al., 2005; 
Török & Varga, 1997; Török, Varga, Laczik, & Booker, 1995; van de Nes, Billy, 
Pereira, & Braat, 2004). For more complex topographies, advanced numerical 
methods such as the waveguide method (Tanabe, 1992), the differential method 
(Kirchauer & Selberherr, 1997), the C-method (Yeung, 1990), the finite-
element method (Matsuzawa, Moniwa, Hasegawa, & Sunami, 1987; Urbach & 
Bernard, 1989), the finite-difference time-domain method (Gamelin, Guerrieri, 
& Neureuther, 1989), and the integral-equation method (Yeung & Barouch, 
1997) can be used to obtain the field distribution in the image space.

The Debye–Wolf integral (109) can be generalized to include the 
aberrations of the collection-refocusing optics by the inclusion of an addi-
tional phase factor in the exponential kernel of the integral:

where the aberration function �(s′x, s′y) is a measure of the deviation of the 
wavefront from perfect spherical shape (Wolf, 1959). Regarding the aberrat
ion function as a small perturbation, the validity condition (112) can still be 
assumed to hold for (114). If the image space is homogeneous, the generalized 
Debye–Wolf integral (114) gives the final field distribution. Let us now discuss 
the numerical evaluation of the generalized Debye–Wolf integral (114) for a 
homogeneous image space, regarding the original Equation (109) as a special 
case. We will discuss the cases of periodic and non-periodic scatterers separately.

3.4.1  Periodic Scatterers
We assume that, at the end of the collection step, the strength factor Es(θ, φ) 
at the far zone has been found in the form (62). The Floquet modes Rpq 
may have either been provided directly by a modal method or by discrete 
Fourier transform (DFT) of near-field values provided by a finite method 
(see Section 3.3.1). Substituting the definitions of α, β in (47) and βp, βq 
in (59), the strength factor in (62) becomes

(114)Eimg(x′, y′) = jk′

2π

∫∫

�img

E′
s(s

′
x, s′y)e

−jk′
[
s′xx′+s′yy′+�(s′x,s

′
y)

]

d�,

(115)

Es(sx, sy) = (jk2π)
∑

p

∑

q

cpqRpq

× δ(ksx − ksxi + p2π/dx)

× δ(ksy − ksyi + q2π/dy),
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where k is the wavenumber in the object space. A change of variables is 
made from the angle variables (θ, φ) to the direction cosines (sx, sy) at the 
entrance pupil:

and the direction cosines of the incident plane wave in the object space 
are defined as

The Abbe sine condition states that the direction cosines (s′x, s′y) of a ray 
at the exit pupil are 1/M ′ times the direction cosines (sx, sy) of the same 
ray at the entrance pupil, where M ′ is given by (99). Substituting (115) 
with (sx, sy) = (M ′s′x, M ′s′y) into (108) and using the scaling property 
δ(ax) = δ(x)/|a| of the Dirac delta function, we obtain the strength factor 
at the exit pupil:

where

and the cosine parameters c ′pq are defined the same way as in (63), with 
(βp, βq) replaced by (βp/M ′, βq/M ′). The θ̂ ′ and φ̂′ components of the 
vector amplitude R′

pq are

The image field is obtained by substituting (118) into the Debye–Wolf 
integral (114):

(116)(sx, sy) = (α/k, β/k) = (cos φ sin θ, sin φ sin θ)

(117)(sxi , syi ) = (cos φi sin θi, sin φi sin θi).

(118)

E′
s(s

′
x, s′y) = j2π

M ′k′
∑

p

∑

q

(n′cpqc
′
pq/n)1/2R′

pq

× δ
(
s′x − s′xi

+ p2π/(M ′k dx)
)

× δ

(
s′y − s′yi

+ q2π/(M ′k dy)

)
,

(119)(s′xi
, s′yi

) = (cos φi sin θi/M ′, sin φi sin θi/M ′)

(120)
R′

pqθ ′ = −Rpqθ
,

R′
pqφ′ = −Rpqφ

.

(121)Eimg(x′, y′) = e
−jk′(s′xi

x′+s′yi
y′)

∑

p

∑

q

R̄
′
pqe

j 2π
M

(
p x′

dx
+q

y′
dy

)

,
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with the modified vector Floquet mode R̄′
pq defined by

The phase factor in front of the summations in (121) is also present in the 
object-space field distribution (58). It is enforced by the plane wave incident 
on the periodic scatterer. An interesting consequence of (121) and (122) is 
that not only the image is inverted, but the polarization of the electromag-
netic field in the image is inverted as well. This is seen more clearly if we 
assume M ′ = 1 and � = 0 in (122), which gives R̄′

pq = −R′
pq. This result is 

intuitively satisfying, since it implies a vector inversion of the electromagnetic 
field as a generalization of the classical image inversion of geometrical optics.

If the image field (121) is to be evaluated at a few (x′, y′) positions, it 
can be calculated directly by a brute-force method. If a whole region is 
of interest, then a DFT-based evaluation is more efficient. It will now be 
shown that, using DFT (and its efficient computation by the fast Fourier 
transform, FFT), Equation (121) for the image field can be evaluated at a 
discrete rectangular grid of (x′, y′) points with an arbitrary spacing in x′ 
and y′. First, it is important to remember that the p and q indices in (121) 
belong to a finite set. They are the indices of the scattered Floquet modes 
Rpq that fall within the entrance pupil and subsequently leave the exit pupil. 
The range of indices in (121) is thus defined by the following condition:

This condition is shown geometrically in Figure 16. A rectangular grid 
of points (s′xp

, s′yq
) are represented by the indices p and q. The origin 

(p, q) = (0, 0) of the indices corresponds to (s′xi
, s′yi

). Only the direction 
cosines that fall within a circle of radius sin θimg are counted in (121), because 
of the condition (123). Let pmin and pmax denote the minimum and maxi-
mum permissible indices in p, and qmin, qmax the corresponding indices for 
q. Let us write the summation term in (121) as a double summation over a 
rectangular region of indices limited by pmin, pmax, qmin, and qmax, with the 
implicit assumption that R̄′

pq vanishes outside the range set by (123):

(122)R̄
′
pq = −

√
n′cpq

nc ′pq

1

M ′ R
′
pqe

−jk′�
(

s′xi
− p2π

M ′kdx
,s′yi

− q2π

M ′kdy

)

.

(123)

(
s′xi

− p
2π

M ′kdx

)2

+
(

s′yi
− q

2π

M ′kdy

)2

< sin2 θimg.

(124)
pmax∑

p=pmin

qmax∑

q=qmin

R̄
′
pqe

j 2π
M

(
p x′

dx
+q

y′
dy

)

,
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which becomes, after shifting the indices by pmin and qmin,

The summation term above will take a true DFT form if it is sampled at a 
discrete set of points. Consider the sampling

in which �x and �y are chosen such that the sampling covers the entire 
magnified periods in both x′ and y′:

Substituting (126) in (125), the summation term becomes

This expression is almost in the same form as DFT and can be evaluated 
using the same efficient FFT algorithms (Oppenheim et al., 1999). In 

(125)

e
j 2π

M (pmin
x′
dx

+qmin
y′
dy

)

×
pmax−pmin∑

p=0

qmax−qmin∑

q=0

R̄
′
p+pmin,q+qmin

e
j 2π

M

(
p x′

dx
+q

y′
dy

)

.

(126)
(x′, y′) = (m�x, n�y), m = 0 . . . P − 1,

n = 0 . . . Q − 1

(127)P�x = Mdx, Q�y = Mdy.

(128)
pmax−pmin∑

p=0

qmax−qmin∑

q=0

R̄
′
p+pmin,q+qmin

e
j2π

(
pm
P + qn

Q

)

.

Figure 16  The admissible Floquet modes for a periodic scatterer. Only those that fall 
within the exit pupil contribute to the image.
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fact, when divided by PQ, it is called the (P × Q)-point inverse DFT of 
R̄

′
p+pmin,q+qmin

. For an efficient FFT operation, P and Q should be chosen to 
have small multiple prime factors. Once the inverse-DFT expression (128) 
is computed, the image field (121) is directly obtained at the sampled image 
positions (x′, y′) = (m�x, n�y). This sampling can be made arbitrarily fine 
by increasing P and Q.

3.4.2  Non-periodic Scatterers
For a non-periodic scatterer, the far-zone field is evaluated at a discrete set 
of observation directions. Two different arrangements for this discrete set 
are shown in Figure 12. If the rectangular arrangement of Figure 12(a) is 
chosen, then the direction cosines (s′x, s′y) are also distributed in a rectan-
gular grid inside a circle of radius sin θimg. The relationship between the 
object-side strength factor Es(sx, sy) and the image-side strength factor 
E′

s(s
′
x, s′y) is given by (108). Once E′

s(s
′
x, s′y) is determined, the Debye–Wolf 

integral (114) for the image field can then be evaluated numerically using 
DFT. A quick comparison shows that (114) is in the same form as the 
inverse-Fourier-transform relation (42), except a trivial change of variables 
(s′x, s′y) → (k′s′x, k′s′y). Since the double integral only covers the region 
(s′2x + s′2y )1/2 � sin θimg, we can extend the limits of the integral from −∞ 
to ∞ and assign E′

s(s
′
x, s′y) = 0 for (s′2x + s′2y )1/2 > sin θimg. Using the 2D 

Fourier relation (41), we can invert the relation (114) to obtain

Let the direction cosines inside the imaging cone be discretized by divid-
ing the rectangular region defined by − sin θimg < s′x < sin θimg and 
− sin θimg < s′y < sin θimg into P × Q rectangular patches, and choosing 
(s′xp

, s′yq
) to be at the center of each patch:

where

(129)

E′
s(s

′
x, s′y) = (−jk′) cos θ ′

2π
e

jk′�(s′x,s
′
y)

×
∫∫

x,y

Eimg(x′, y′)ejk′(s′xx′+s′yy′)
dx′dy′.

(130)
s′xp

= s′x0
+ p�s′x, p = 0 . . . P − 1,

s′yq
= s′y0

+ q�s′y, q = 0 . . . Q − 1,

(131)
s′x0

= − sin θimg(1 − 1/P),

s′y0
= − sin θimg(1 − 1/Q)
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and the sampling periods �s′x and �s′y are

Let us define an auxiliary variable G′(s′x, s′y) that combines the strength 
factor E′

s(s
′
x, s′y) with the cos θ ′ factor and the aberration phase factor 

e
−jk′�(s′x,s

′
y) in (129) as follows:

This definition facilitates the direct application of 2D DFT to the numeri-
cal evaluation of (114). The 2D array resulting from the sampling of the 
auxiliary variable G′(s′x, s′y) according to (130) is defined as

Now, it will be shown how the 2D DFT of the array G′[p, q] can be related 
to the continuous image field Eimg(x

′, y′) in (114). Adopting the same con-
vention as in Section 3.3, we define 2D DFT of G′[p, q] as

The DFT lengths Np and Nq are greater than or equal to P and Q, respec-
tively. If they are greater, then G′[p, q] is zero-padded up to the required 
length. It is shown in Appendix C that E[m, n] is a sampled and periodically 
replicated (aliased) version of the continuous image field Eimg(x

′, y′):

in which the spatial sampling periods �x, �y and the aliasing periods 
D ′

x, D ′
y are defined as

(132)
�s′x = 2 sin θimg/P,

�s′y = 2 sin θimg/Q.

(133)G′(s′x, s′y) �
E′

s(s
′
x, s′y)

cos θ ′ e
−jk′�(s′x,s

′
y).

(134)G′[p, q] = G′(s′xp
, s′yq

).

(135)E[m, n] =
Np−1∑

p=0

Nq−1∑

q=0

G′[p, q]e−j2π

(
pm
Np

+ qn
Nq

)

.

(136)

E[m, n] = 2π

(jk′)�s′x�s′y

×
∞∑

r=−∞

∞∑

s=−∞
e

j2π

(
s′x0

�s′xNp
(m+rNp)+

s′y0
�s′yNq

(n+sNq)

)

× Eimg

(
m�x + rD′

x, n�y + sD′
y

)
,

(137)�x = 2π

k′�s′xNp
, �y = 2π

k′�s′yNq
,
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If the shifted replicas of Eimg(m�x, n�y) in (136) do not overlap, then 
Eimg(m�x, n�y) can be retrieved from (136) as follows:

for a range of m and n values centered around m = n = 0 over which 
Eimg(m�x, n�y) is nonzero. The condition for this retrieval is that the alias-
ing periods D ′

x, D ′
y are greater than the x′ and y′ dimensions W ′

x , W ′
y  of the 

“nonzero-field area” over which the amplitude of the electromagnetic field 
Eimg(x

′, y′) is non-negligible:

Barring diffraction effects on the order of ∼λ, the dimensions W ′
x , W ′

y  are 
equal to the corresponding dimensions at the object side multiplied by the 
magnification M of the system. At the end of Section 3.3, these object-
side dimensions were defined as Wx and Wy. It follows that the dimensions 
W ′

x , W ′
y  of the “nonzero-field area” at the image space are given by MWx 

and MWy. Using the definitions of the aliasing periods D′
x, D′

y in (138), the 
non-aliasing condition (140) becomes

The Abbe sine condition (98) also relates the sampling periods 
(�sx, �sy), (�s′x, �s′y) at the entrance and exit pupils linearly through 
M ′ = n′M/n. Using this relationship and k′/k = n′/n in (141), we obtain 
the sampling relations (97) given at the end of Section 3.3, reproduced here 
for convenience:

This condition places an upper limit on the distances �sx and �sy between 
the direction cosines of the angles at which the far-zone field is collected 
(see Figure 12(a)).

Assuming that the retrieval (139) is accurate, the electric field 
Eimg(x

′, y′) is now known at discrete spatial positions (m�x, n�y). We 

(138)D′
x = Np�x = 2π

k′�s′x
, D′

y = Nq�y = 2π

k′�s′y
.

(139)
Eimg(m�x, n�y) ≈

(jk′)�s′x�s′ye
−j2π

(
s′x0

�s′xNp
m+

s′y0
�s′yNq

n

)

2π
E[m, n].

(140)D′
x > W ′

x , D ′
y > W ′

y .

(141)�s′x <
2π

k′MWx
, �s′y <

2π

k′MWy
.

(142)�sx <
2π

kWx
, �sy <

2π

kWy
.
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know that the vector field Eimg(x
′, y′) is spatially bandlimited, since 

E′
s(s

′
x, s′y) is only nonzero inside (s′2x + s′2y )1/2 � sin θimg. The spatial band-

width of the field is therefore 2k′ sin θimg. From the Nyquist sampling 
theorem, this bandlimited field is completely determined by its sampled 
version Eimg(m�, n�) if the sampling period is smaller than or equal  
to � = 2π/(2k′ sin θimg) = λ′/(2 sin θimg), which corresponds to the tra-
ditional definition of the “diffraction limit.” For the minimum allowable 
DFT lengths Np = P and Nq = Q in (135), it follows from (132) that both 
sampling periods in (137) are equal to this limit, and the continuous field 
Eimg(x

′, y′) is represented by the least possible number of sampling points. 
In order to evaluate the continuous field Eimg(x

′, y′) at higher spatial 
precision, one can simply increase the DFT lengths Np and Nq.

A second way to numerically evaluate (114) follows from a generaliza-
tion of the Nijboer–Zernike aberration theory (Born & Wolf, 1999), called 
the extended Nijboer–Zernike (ENZ) theory by its developers (Braat, 
Dirksen, & Janssen, 2002; Braat, Dirksen, Janssen, & van de Nes, 2003; 
Braat, Dirksen, Janssen, van Haver, & van de Nes, 2005; Janssen, 2002). The 
important features of the ENZ method are the evaluation of the series 
expansions in the original Nijboer–Zernike method with more terms, and 
the redefinition of the aberration function �(s′x, s′y) as a complex quantity, 
thereby accounting for the variations of the vector amplitude E′

s(s
′
x, s′y) on 

the wavefront. In the ENZ method, one starts by expanding the aberration 
function �(s′x, s′y) into a series in the form

in which s′ = (s′2x + s′2y )1/2 and φ′ is the azimuthal angle in the image 
space. In (143), Rm

n (s′) are the Zernike circle polynomials (Born & Wolf, 
1999), and different terms in (143) are orthogonal to each other inside the 
unit circle. The coefficients αnm can therefore be obtained by integrating 
�(s′x, s′y)R

m
n (s′) cos(mφ′) over the unit circle and making use of the orthogo-

nality property. Because polar coordinates (s′, φ′) are used in (143), the polar 
arrangement of (sx, sy) in Figure 12(b) at the collection step is more suit-
able for this integration. Next, the generalized Debye–Wolf integral (114) 
is expanded into an infinite series in �(s′x, s′y), resulting in definite integrals 
involving the products of exponential and Bessel functions. These integrals 
can be evaluated off-line, and lookup tables can be generated for repeated use 
in the future. Using these lookup tables and the coefficients αnm of the aber-
ration function �(s′x, s′y), the generalized Debye–Wolf integral (114) can be 

(143)�(s′x, s′y) =
∑

n,m

αnmRm
n (s′) cos(mφ′),



İlker R. Çapoğlu et al.66

calculated to a desired degree of accuracy. Any additional phase term in the 
aberration function �(s′x, s′y) requires only the recalculation of the coefficients 
αnm. At this point, the use of Zernike circle polynomials in (143) becomes a 
real advantage. If the additional phase term for the aberration is expressed in 
terms of Zernike polynomials, only the αnm terms that have the same indices 
as those polynomials will be affected. As a result, the effects of primary aber-
rations (spherical aberration, coma, astigmatism, etc.) on the imaging perfor-
mance can be investigated extremely efficiently, without any need to carry 
out two-dimensional numerical integration or numerical quadrature for each 
different aberration. The ENZ method has also been generalized to planar 
multilayered structures (Braat, van Haver, Janssen, & Pereira, 2009).

The ENZ formulation does not suffer from the aliasing artifacts encoun-
tered in the DFT-based formulation. It is inherently geared toward synthe-
sizing the images of non-periodic structures. In van Haver et al. (2008, 2009) 
and Janssen et al. (2008), the image-space field distributions (also called aerial 
images in photolithography) of non-periodic masks were computed using 
the ENZ method. On the other hand, convergence and range of validity 
issues are of greater importance in the ENZ method because of the heavy 
use of series expansions. The relative theoretical complexity and the diffi-
culty of constructing the lookup tables is another disadvantage.

It should be remembered that the integral expression (114) for the 
image field is created by a coherent illumination beam. If Köhler illumi-
nation is employed (see Section 3.1.2), this coherent illumination beam 
is one of the plane-wave components in Figure 5. In order to obtain the 
total intensity at the image space, the image intensities corresponding to 
every incidence direction and polarization in Figure 5 should be added. As 
mentioned in Section 2, the image intensity due to a single plane wave is 
proportional to the absolute square of Eimg(x′, y′) in (114).

One subtle point that needs to be addressed with regard to non-periodic 
scatterers is the presence of planar material layers in the object space. This 
issue was touched upon at the end of Section 3.3. The NFFFT surface S in 
Figure 11(b), only collects the scattered field and not the incident or reflected 
beam. Therefore, the contribution to the image by the latter needs to be 
calculated separately. Let the incident or reflected beam be a plane wave 
with direction cosines (sxi , syi ) in the object space. Other coherent beams 
can be expressed as a sum of plane waves (see Section 3.1.1). Notationally, 
this plane wave can be regarded as the zeroth-order Floquet mode in (58):

(144)Ei(x, y) = R00e−jk(sxi x+syi y).



The Microscope in a Computer 67

With this notation, the results for the image field of periodic scatter-
ers in Section 3.4.1 are immediately applicable. Only considering the 
(p, q) = (0, 0) mode in (121), the image field due to the incident or 
reflected plane wave is found as

in which R′
00 is given by (120). Using (145), each incident or reflected 

plane wave can be propagated to the image space and added coherently to 
the image field (139) scattered from the object.

We conclude this section with a brief discussion of broadband imaging. 
Almost all of the formulation presented for the illumination, collection, and 
refocusing steps has been for harmonic time dependence exp(jωt), which 
corresponds to full temporal coherence and an infinitesimally narrow band-
width. All the results so far can be immediately generalized to a broadband 
source. It was mentioned in Section 2 that a large class of optical sources 
can be modeled as statistically stationary in time. The total intensity at any 
position (x′, y′) at the image plane is the integral of the power-spectral 
density Simg(x′, y′; ω) across all frequencies. Therefore, from the power-
spectral density relation (12), the total intensity at the image plane can be 
found by repeating the entire numerical imaging formulation for every 
frequency component present in the source, and adding the image intensities 
corresponding to each frequency component. As mentioned in Section 2, 
the frequency response H(ω) can be evaluated at multiple frequencies in a 
single simulation run if a broadband method such as FDTD is used to cal-
culate the time-domain scattering response. Another technical point related 
to broadband simulation is the effect of different excitation wavelengths on 
the numerical calculation of the image. If the discrete arrangement of the 
direction cosines �s′x, �s′y defined by (130) is kept fixed at every frequency, 
the spatial sampling periods �x, �y as well as the aliasing periods D′

x, D′
y 

in (137) and (138) for the sampled image field (136) scale linearly with the 
wavelength λ. This complicates the direct summation of the image field 
in the image plane, since the field is evaluated at different spatial points 
at different wavelengths. To avoid this complication, it is advisable to scale 
the direction cosines �sx, �sy by the wavelength λ in the collection step. 
This implies that a different set of observation directions is recorded for 
each wavelength in the near-field-to-far-field transform (NFFFT) step 
(see Section 3.3). An additional advantage of scaling the direction cosines 

(145)Eimg(x′, y′) = −
√

n′ cos θi

n cos θ ′
i

1

M ′ R
′
00e

−jk′�(s′xi
,s′yi

)
e
−jk′(s′xi

x′+s′yi
y′)

,
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with the wavelength is that the no-aliasing condition (142) becomes only 
dependent on the spatial extent of the object-side field distribution, and 
independent of the wavelength.

4.  IMPLEMENTATION EXAMPLES

In this section, we will present some example results obtained using 
an optical imaging simulation software package that features some of the 
methods reviewed in previous sections. The simulation package is based 
on an in-house implementation of the three-dimensional finite-difference 
time-domain (FDTD) method. It has been used to generate original results 
for previous publications (Capoglu & Smith, 2006, 2008; Capoglu et al., 
2008, 2011), and has been thoroughly tested and verified. The simulation 
package, named Angora, is freely available under the GNU Public License 
(Capoglu, 2012).

In all the examples, the object and image spaces are both free space, 
i.e., n′ = n = 1. The object and image-space wavenumbers are equal 
(k′ = k = k0), and from (99), the angular de-magnification M ′ is equal to 
the magnification M.

For our first simulation example, we consider the numerical microscope 
image of a thin structure in the form of the letters “N” and “U” embossed 
on an infinite dielectric substrate. Two-dimensional cross-sections of the 
simulation geometry across the xy and xz planes are shown in Figure 17(a).  
The embossed structure is a dielectric material with refractive index 
n = 1.38 and dimensions 12 µm × 6 µm × 0.27 µm. It is situated on a glass 
half plane with refractive index n = 1.5. This could represent an idealized 
situation where the embossed structure is on a glass slide, if the illumination 
is focused on the top surface of the slide and the thickness of the slide is 
much larger than the focal depth of the illumination. Even the smallest-NA 
illumination has a finite focal depth in practice, so this condition is very 
easy to fulfill. When these conditions are fulfilled, the scattered beam due 
to the bottom surface of the slide is far out of focus and spread over a large 
area; therefore, it can be neglected. The structure is illuminated normally 
by a y-polarized plane wave that has a modulated-Gaussian time waveform 
sin(2π f0t) exp(−t2/2τ 2) with f0 = 5.89 × 1014 and τ = 2.13 × 10−15 s. 
The −20 dB wavelengths of this beam in free space are 400 and 700 nm. 
This approximates a polarized illumination beam with very low illumination 
NA (see Section 3.1.1). Incoherent and unpolarized illumination can be 
achieved by repeating this simulation for multiple incidence directions and 
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polarizations (see Section 3.1.2, especially the discussion involving Figure 5).  
The scattered near fields are computed in an FDTD grid with the follow-
ing parameters: grid dimensions 12.635 µm × 6.65 µm × 0.5985 µm, grid 

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 17  An example computational imaging simulation. The letters “N” and “U” are 
embossed on a glass substrate and imaged at magnification M = 10. (a) The xy and xz 
sections of the FDTD grid. (b) Bright-field image for NAobj = 0.9. (c) Bright-field image for 
NAobj = 0.2. (d) Bright-field image for NAobj = 0.4. (e) Dark-field image. (f ) Phase-contrast 
image. (g) Image of the off-focus plane z = 6 µm.
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spacing �x = �y = �z = � = 13.33 nm, time step �t = (0.98/
√

3)�/c 
The computational grid is truncated by 10-cell thick convolution perfectly 
matched layer (CPML) (Roden & Gedney, 2000). The illumination plane 
wave is sourced into the FDTD grid using the total-field/scattered-field 
(TF/SF) formulation (Taflove & Hagness, 2005) with multilayer capabili-
ties (Capoglu & Smith, 2008). The TF/SF boundary is placed eight cells 
away from the PML boundary. The scattered field is collected on a surface 
four cells away from the PML, and transformed to the far field using a fre-
quency-domain vector-potential near-field-to-far-field transform (NFFFT) 
algorithm (Taflove & Hagness, 2005) for a two-layered medium (Capoglu 
et al., 2012). The far field is calculated at a set of observation directions 
(θ, φ) arranged as in Figure 12(a), with equally spaced direction cosines 
(sx, sy) within a collection numerical aperture NAobj = 0.9. The spacings 
of the direction cosines are �sx = 0.0167 and �sy = 0.0333. A smaller 
spacing is necessary in sx because the structure is wider in the x direction 
[see Section 3.4.2, Equation (142)]. At each observation direction, the far 
field is calculated at 7 wavelengths between 400 and 700 nm with equal 
spacing in k = 2π/λ. It is assumed that the microscope has magnification 
M = 10 and is free of aberrations (� = 0). The sampled field distribution 
Eimg(m�x, n�y) at the image plane is calculated using the DFT-based refo-
cusing algorithm of Section 3.4.2, described by Equations (134)–(139) with 
E′

s(s
′
xp

, s′yq
) given by (108). The continuous field Eimg(x

′, y′) is oversampled 
with Np = Nq = 256 in (135) for a smooth intensity image. Since the scat-
tering geometry is two layered, the plane wave reflected from the air–glass 
interface has to be propagated to the image space using (144) and (145). 
Unless otherwise noted, all intensity spectra are normalized by the inten-
sity spectrum at a pixel corresponding to the glass region. In Figure 17(b),  
the mean of the normalized intensity across all wavelengths (called the 
bright-field image) for a collection NA of 0.9 is shown in grayscale with 
black and white corresponding to 0 and 1.85, respectively. In Figure 17(c) 
and (d), the same image is shown for collection NAs of 0.2 and 0.4 within 
the same grayscale limits. The blurring of the image due to the increased 
diffraction limit is immediately apparent. In Figure 17(e), the plane wave 
reflected from the glass slide is subtracted from the image, resulting in a 
modality similar to dark-field microscopy. If the reflected plane wave is phase-
shifted by 90° instead of being subtracted from the total image, the image in  
Figure 17(f ) is obtained. This is very similar to the procedure followed in 
phase-contrast microscopy. In both Figure 17(e) and (f ), the collection NA 
is 0.9 and the spectra are normalized by the same glass spectrum used to 
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normalize the previous figures. However, the grayscale limits are 0 and 3.5 
because of the higher intensity contrast. It is seen that the phase-contrast 
image yields better contrast than the dark-field image. Finally, in Figure 17(g),  
the normalized bright-field image of the off-focus plane z = 6 µm at the 
object space is shown for a collection NA of 0.9. The distortion of the 
image due to the lack of sharp focus is clearly visible.

In our second implementation example (Capoglu et al., 2011), we 
compare the numerically calculated “microscope in a computer” images 
and spectra of polystyrene latex beads to experimental results obtained 
from an actual microscope coupled to a spectrometer and a CCD camera. 
In the actual experiment, two different sizes of polystyrene latex beads 
(2.1 µm and 4.3 µm diameter, Thermo Scientific) are placed on a glass 
slide with refractive index n = 1.5. The refractive index of the latex beads 
is frequency-dependent, but is guaranteed to be between 1.59 and 1.61 in 
the wavelength range 486–589  nm according to the bead specifications. 
The illumination is passed through a diffuser to smoothen the inhomo-
geneity of the white-light xenon lamp, and projected on the sample using 
a Köhler setup with illumination numerical aperture NAill = 0.2. The 
magnification of the microscope is M = 40 and the collection numeri-
cal aperture is NAobj = 0.6. The image of the sample is projected on a 
spectrograph with a 10 µm slit width coupled with a CCD camera. The 
spectrograph records the spectra at a column of pixels, resulting in a 2D 
data array. A 3D spectroscopic image is acquired by scanning the slit of the 
spectrograph over the image with a 10 µm step. More details on the optical 
setup can be found in (Liu, Li, Kim, & Backman, 2005). For the numeri-
cal simulation of this microscope, we used the FDTD package mentioned 
in the beginning of the section. The parameters for the FDTD simula-
tion are as follows: grid dimensions 5 µm × 5 µm × 5 µm with spacing 
�x = �y = �z = 31 nm, time step �t = (0.98/

√
3)�x/c. The grid is 

terminated with 10-cell thick convolution PML. In the simulations, a fixed 
refractive-index value of n = 1.61 is chosen for the polystyrene beads as 
a first approximation. Exploiting the rotational symmetry of the bead and 
the microscope setup, 204 incident plane waves (102 × 2 polarizations) are 
distributed in the Cartesian arrangement of Figure 5 only within the first 
quadrant of the circle of illumination. The final image is synthesized by 
rotating the resulting image intensity by 0 º, 90º, 180º, and 270º, and add-
ing the intensities together. Each incident plane wave has a sine-modulated 
Gaussian waveform, with –20-dB wavelengths at 486 and 589 nm. The 
scattered light is collected at a set of observation directions arranged with 
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equally spaced 50 × 50 direction cosines (sx, sy) inside a collection numeri-
cal aperture NAobj = 0.6. The spacing in sx and sy is uniform, and equal 
to �sx = �sy = 0.024. The far field at each direction is calculated at 30 
wavelengths between 486 and 589 nm spaced linearly in k = 2π/λ. The 
sampled field distribution Eimg(m�x, n�y) at the image plane is calculated 
with no oversampling (at 50 × 50 points) using the refocusing algorithm 
(134)–(139) with E′

s(s
′
xp

, s′yq
) given by (108). Both the measured/simulated 

spectra are normalized by the measured/simulated spectrum at a glass pixel. 
The grayscale plots on the left and center columns of Figure 18 show 
the simulated and measured bright-field images, respectively. The plots 
on the right column show the measured and simulated spectra between 

Figure 18  Comparison of microscopy images and pixel spectra obtained via an FDTD 
“microscope in a computer” software package and an actual spectroscopic microscope. 
The bright-field images from FDTD and experiment are shown in the left and center 
columns, while the spectra from the center pixel are shown in the right column. (Top) 
2.1 mm bead. (Bottom) 4.3 mm bead. (Source: Capoglu et al. (2011), © 2011 The Optical 
Society.)
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486 and 589 nm at the pixels annotated by arrows. Since the precise focal 
plane position in the measurement is unknown, FDTD image at the opti-
mum focusing depth is chosen for each comparison. The optimum focal 
positions at the object space are z = 1.58 µm for the 2.1 µm bead and 
z = 1.44 µm for the 4.3 µm bead. At these optimum focal positions, the 
root-mean-square errors in the spectra are 11.4% and 8.2%, respectively. 
The error is primarily caused by the dispersive nature of the beads and 
the variations in their sizes. It should be noted that the same multilayer 
techniques used for the previous example have also been used here. The 
bottom surface of the glass slide on which the beads is placed is far out of 
focus; therefore, the reflection from that interface is spread over a large area 
with much reduced intensity at the top interface. For this reason, the glass 
slide is modeled as a two-layered space.

Our final example will demonstrate the potential of the imaging algo-
rithms reviewed in this paper for modeling spatial features in the nano
meter scale. We consider a cell model placed on a glass slide (n = 1.5), and 
calculate its microscope images using the same FDTD package used for the 
previous examples. The surface profile of the cell model is that of a human 
buccal cell from inside the cheek, measured using atomic-force microscopy 
(AFM) and read into an FDTD grid. The measured AFM surface profile 
of the cell is shown in grayscale in Figure 19(a). The maximum height 
value, represented by the brightest shade of gray, is 990 nm. The interior of 
the cell model is filled with a homogeneous material of refractive index 
n = 1.38—a value guided by previous cell refractometry studies (Beuthan, 
Minet, Helfmann, Herrig, & Muller, 1996; Lue et al., 2006). The buccal 
cell is approximately of dimensions 80 µm × 80 µm × 1 µm. The param-
eters of the FDTD grid are as follows: 85 µm × 85 µm × 1.45 µm grid 
with spacing �x = �y = �z = 25 nm, time step �t =

(
0.98/

√
3
)
�x/c, 

five-cell thick convolution PML. The illumination is a normally incident 
plane wave with a sine-modulated Gaussian waveform whose –20-dB 
wavelengths are 400 and 700 nm, respectively. Two orthogonal polariza-
tions are sent separately, and the resulting intensities are added for the final 
image. The far-zone field is calculated at directions arranged as in Figure 
12(a), with direction-cosine spacing �sx = �sy = 0.0048 inside a collec-
tion numerical aperture of NAobj = 0.6. For each observation direction, 10 
wavelengths (spaced linearly in k) are recorded between 400 and 700 nm. 
The final intensity spectrum is normalized by the spectrum of a glass pixel, 
resulting in a normalized spectroscopic reflectance image. In Figure 19(b), 



İlker R. Çapoğlu et al.74

(a) (b)

(c) (d)

(e) (f)

Figure 19  Simulated microscope images of a buccal (cheek) cell model at magnifica-
tion M = 1. (a) The measured AFM profile of the cell. The maximum height is 990 nm. 
(b) Bright-field image for NAobj = 0.6. The spectra at the pixels annotated by arrows 
are plotted in Figure 20. (c) Bright-field image for NAobj = 0.2. (d) Dark-field image. (e) 
Phase-contrast image. (f ) Image of the off-focus plane z = 20 mm. [Grayscale values are 
137 nm→990 nm for (a); 0 →2 for (b), (c), (f ); 0 →6 for (d) and (e).]
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the simulated bright-field reflectance image at NAobj = 0.6 is shown in 
grayscale. The minimum and maximum brightness values correspond to 
0 and 2, respectively. In Figure 19(c), the bright-field image for a reduced 
collection NA of 0.2 is shown. The dark-field and phase-contrast images 
are shown in Figure 19(d) and (e), with brightness values between 0 and 6. 
The effect of focusing is demonstrated in Figure 19(f ), where the bright-
field image of the off-focus plane z = 20 µm is shown at the same grayscale 
level as Figure 19(b)–(f ). It should be noted that there is a spectrum associ-
ated with every recorded pixel, and Figure 19(b)–(f ) all represent certain 
averages over these spectra. The normalized reflectance spectra at the three 
pixels (nucleus, cytoplasm, glass) annotated by the arrows in Figure 19(b) 
are shown in Figure 20. The spectrum at the pixel outside the cell is almost 
unity, since the spectra are normalized by the spectrum of a glass pixel. 
The deviation from unity is because the AFM measurements are not flat 
and noise-free outside the cell area. Finally, we would like to note that the 
partially coherent Köhler illumination described in Section 3.1.2 has not 
been implemented in this example. However, the angular-shift invariance 
approximation mentioned in Section 3.1.1 and Section 3.2 can safely be 
made for this example. The lateral dimensions of the buccal cell are almost 
two orders of magnitude larger than the axial dimension. Under the angular- 
shift invariance, the response to the oblique plane waves within a finite illu-
mination numerical aperture NAill can be approximated as angularly shifted 
versions of the response to the normally incident plane wave.

Figure 20  Reflectance spectra between 400 and 700 nm at three pixels in the simu-
lated microscope image of the buccal-cell model. The three pixels, annotated by arrows 
in Figure 19(b), fall within the nuclear, cytoplasmic, and glass regions.
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The last implementation example clearly demonstrates the power of 
numerical computation for simulating optical microscopy modalities. Although 
microscopy simulation has been previously applied to integrated-circuit inspec-
tion and mark alignment, computational resources have only recently caught 
up with the possibility of applying the same principles to large and extremely 
complex biological media (Hollmann et al., 2004; Starosta & Dunn, 2009). 
The continued increase in the speed and availability of computing resources 
will soon make it possible to simulate even the most complicated biological 
samples within manageable time limits. Although a substantially large scatterer 
such as the buccal-cell model in Figure 19 is still beyond the range of a per-
sonal workstation, this is bound to be overcome in the near future.

5.  SUMMARY

In this tutorial and review paper, a comprehensive account of the 
theoretical principles behind the numerical electromagnetic modeling of 
optical imaging systems and a thorough literature survey of the entire sub-
ject is presented. In short, this virtual system can be called a “microscope 
in a computer.” The underlying principles, however, are applicable to any 
optical imaging modality, including those used in photolithography, metrol-
ogy, inspection, and alignment. The optical imaging system is decomposed 
into four self-contained subcomponents (illumination, scattering, collect
ion, and refocusing), and each of these subcomponents is mathematically 
analyzed. Approximate numerical methods used in the modeling of each 
subcomponent are explained in appropriate detail. Relevant practical appli-
cations are cited whenever applicable. The algorithms reviewed in the paper 
are illustrated via several implementation examples involving the simulated 
microscopy images of nanoscale structures. The paper will hopefully consti-
tute a useful starting point for those interested in modeling optical imaging 
systems from a rigorous electromagnetics point of view. A distinct feature of 
this paper is the extra attention paid to the issues of discretization and signal 
processing. This is a key issue in finite methods, where the electromagnetic 
field is only given at a finite set of spatial and temporal points.
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APPENDIX A.  DERIVATION OF (18)

The mutual coherence function J ∗(xd; yd) resulting from the finite collec-
tion of plane waves in Figure 5 is

where both m and n range from −∞ to ∞. The expression (15) for the 
original mutual coherence function J(xd; yd) is in the form of a Fourier 
transform and can be inverted to yield the following for P(sx, sy):

Primed coordinates are used to avoid confusion in what follows. Using 
(147), (146) becomes

Substituting sxm = m�sx and syn = n�sy, the expression in square brackets 
becomes (Oppenheim, Willsky, & Nawab, 1997)

which, when substituted into (148), yields the desired relation (18).

APPENDIX B.  DERIVATION OF (72)

The original, periodic, continuous vector field E(x, y) can be written using 
the Floquet expansion (58) as follows:

where the integral indices a, b are used to avoid later confusion with the 
Fourier indices p, q. Sampling this function at m�x and n�y, where �x 

(146)J ∗(xd; yd) = �sx�sy
∑

m,n

P(sxm , syn)e
−jk(sxm xd+syn yd),

(147)P(sx, sy) = k2

(2π)2

∫∫ ∞

−∞
J(x′

d; y′
d)e

jk(sxx′
d+syy′

d) dx′
ddy′

d .

(148)

J ∗(xd; yd) =
∫∫ ∞

−∞
dx′

ddy′
dJ(x′

d; y′
d)

×
[

k2�sx�sy

(2π)2

∑

m,n

ejk(sxm (x′
d−xd)+syn (y′

d−yd))

]
.

(149)
∞∑

r=−∞

∞∑

s=−∞
δ

(
x′

d − xd − r
2π

k�sx

)
δ

(
y′

d − yd − s
2π

k�sy

)
,

(150)E(x, y) =
∞∑

a=−∞

∞∑

b=−∞
Rabe

−j(βax+βby),



İlker R. Çapoğlu et al.78

and �y are given by (69), and applying the phase shift as defined in (70), 
one obtains

Substituting the expressions for the Floquet wavenumbers 
βa = k cos φi sin θi − a(2π/dx) and βb = k sin φi sin θi − b(2π/dy), and the 
sampling relations (69), the above expression simplifies to

Now, the DFT of this array is given by

The expression in square brackets is equal to

where δ[·, ·] is the Kronecker delta symbol. Substituting (154) in (153), we 
obtain the desired relation (72).

APPENDIX C.  DERIVATION OF (136)

The sampled auxiliary variable G′[p, q] of (134) is, from (129)–(132),

(151)

Ē[m, n] =
∞∑

a=−∞

∞∑

b=−∞
Rabe

−j(βam�x+βbn�y)

× ejk sin θi(dx cos φi
m
M +dy sin φi

n
N ).

(152)Ē[m, n] =
∞∑

a=−∞

∞∑

b=−∞
Rabe

j2π
(

am
M + bn

N

)

.

(153)

˜̄
E[p, q] =

M−1∑

m=0

N−1∑

n=0

Ē[m, n]e−j2π(
pm
M + qn

N )

=
∑

a

∑

b

Rab

[
M−1∑

m=0

N−1∑

n=0

e
−j2π

(
(p−a)m

M + (q−b)n
N

)]
.

(154)MN

∞∑

r=−∞

∞∑

s=−∞
δ[a, p + rM ]δ[b, q + sN ],

(155)

G′[p, q] = −jk′

2π

∫ ∫ ∞

−∞
dx′dy′Eimg(x′, y′)

× e
jk′

(
s′x0

x′+s′y0
y′

)

e
jk′

(
p�s′xx′+q�s′yy′

)

.
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The DFT of G′[p, q] is, from (135),

The summations in p and q can be extended to infinity, since G′[p, q] is only 
nonzero for a finite number of p and q values. The resulting infinite sum-
mation is equal to an infinite series of Dirac delta functions (Oppenheim 
et al., 1997)

Using the scaling property of the Dirac delta function, this becomes

in which the spatial sampling periods �x, �y and the aliasing periods 
D′

x, D′
y are given by (137) and (138). Substituting this expression into (156) 

and using the sifting property of the delta function to evaluate the integral, 
the desired relation (136) is obtained.
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