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A spectroscopic microscope, configured to detect interference spectra of backscattered light in the far zone, quan-
tifies the statistics of refractive-index (RI) distribution via the spectral variance ( ~Σ2) of the acquired bright-field im-
age. Its sensitivity to subtle structural changes within weakly scattering, label-free media at subdiffraction scales
shows great promise in fields from material science to medical diagnostics. We further investigate the length-scale
sensitivity of ~Σ and reveal that, in theory, it can detect RI fluctuations at any spatial frequency whatsoever. Based on
a 5% noise floor, ~Σ detects scales from ∼22 to 200–700 nm (exact values depend on sample structure and thickness).
In an example involving mass-density distribution characteristic of biological cell nuclei, we suggest the level of
chromatin organization, which can be quantified via ~Σ. © 2014 Optical Society of America
OCIS codes: (180.0180) Microscopy; (290.0290) Scattering; (300.0300) Spectroscopy; (170.1530) Cell analysis.
http://dx.doi.org/10.1364/OL.39.004290

Interferometric spectroscopy of scattered light quantifies
the statistics of refractive-index (RI) distribution inside
weakly scattering media using the spectral variance of
their epi-illumination, bright-field microscope image ( ~Σ2).
Its sensitivity to changes in deeply subdiffractional RI
correlation lengths has been previously demonstrated
[1]. However, as the RI correlation length is a cumulative
statistic of all length scales (LS) present within a sample,
a change in its value implies a global structural reorgani-
zation at all LS, including those larger than the diffraction
limit of light. Thus, when quantifying the LS sensitivity of
~Σ through a statistic of RI distribution, it remains unclear
precisely which structural LS within the sample are
detected. Here we investigate two aspects of the LS sen-
sitivity of ~Σ. First, we determine whether there is a fun-
damental limit to the size of structures it can detect.
Second, we identify which LS within complex samples
with continuous random RI distribution have the largest
contribution to its measured value. Furthermore, in an
example of mass-density distribution characteristic of
biological cell nuclei, we assess which LS of chromatin
organization can be measured via ~Σ.
We model a far-zone, epi-illumination, bright-field mi-

croscope with a small numerical aperture of illumination
and wavelength-resolved image acquisition. Our sample
geometry includes an RI-matched substrate, an RI-
mismatched superstrate (e.g., air), and a uniform thick-
ness L, which is smaller than the microscope’s depth of
field (for most setups, 0.5–15 μm). We define the continu-
ous, spatially varying RI of a weakly scattering sample as
n�r�, and its fluctuating part normalized by the mean
value (n1) as nΔ�r� � �n�r� − n1�∕n1. Using Born ap-
proximation to compute the scattered field inside the
sample and ray optics to describe field propagation
across its boundaries (theory developed in [1]), the ex-
pected value of spectral variance ~Σ2 is found through
the integral of the power spectral density (PSD, ΦnΔ)
of nΔ within a frequency-space volume T3D:

~Σ2 � Γ2k2cL
Δk

Z
T3D

ΦnΔ�k�d3k; (1)

where kc is the central wavenumber of the instrument’s
bandwidth Δk (evaluated inside the sample) and Γ is
composed of reflectance and transmission Fresnel coef-
ficients, Γ � 4n0n1�n0 − n1�∕�n0 � n1�3, with n0 being
the RI of a sample’s superstrate. T3D, as described in de-
tail in [1], includes spatial frequencies kwith longitudinal
coordinates kz between 2k1 and 2k2 (k1 and k2 denoting
the lower and upper wavenumbers of the instrument
bandwidth), contained within a radial distance kzNA
from the kz axis (NA denoting the numerical aperture
of light collection). For consistency, in this Letter we
consider 500–700 nm bandwidth, NA � 0.6, and n1
corresponding to fixed biological media, n1 � 1.53 [2,3].

We begin the LS sensitivity analysis of ~Σ by identifying
spatial RI fluctuations inside a sample at which frequen-
cies it can detect. To isolate the sensitivity to a given spa-
tial frequency of RI fluctuations, we numerically evaluate
~Σ measured from a sample composed of periodic struc-
tures of that frequency only.

Using MATLAB (The MathWorks Inc.), we generate a
zero-mean, statistically isotropic, random, 3D unbounded
medium n∞

Δ �r�, which is characterized by a single spatial
frequency kLS and variance σ2n [Fig. 1(a)]. That is, the ex-
pectation of its PSD in spatial-frequency space is an
infinitely thin spherical shell with a radius kLS centered
at the origin. Then we define the sample as a part of
n∞
Δ �r� with thickness L:nΔ�r� � n∞

Δ �r�TL, where TL is a
windowing function along the z axis. It is important to
note that the PSD of nΔ�r�, due to its finite thickness,
is no longer a spherical shell and is expressed as
ΦnΔ � jσnδ�k − kLS� ⊗ F fTLgj2, where F denotes a uni-
tary Fourier transform operator and ⊗ denotes convolu-
tion [Fig. 2(a)]. Finally, we obtain ~Σ2 by computing the
integral ofΦnΔ within T3D. For comparison, to accentuate
the effect of the finite sample thickness, we repeat the
analysis omitting the convolution with F fTLg, which
corresponds to bulk media with L � ∞.

Referring to Fig. 2(b), we establish that ~Σ can sense RI
fluctuations at any spatial frequency whatsoever and has
an enhanced sensitivity to frequencieswith 1∕kLS between
20 and 40 nm (1∕2k2 � 26 nmand 1∕2k1 � 36 nm). Due to
the finite L, weakly scattering structures of any size and
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shape, including RI fluctuations with subdiffractional
frequencies above 2k2, can still be detected. This is ex-
plained by the fact that the Fourier transform of finite
structures, due to the convolution withF fTLg, is nonzero
inside T3D. Accordingly, lower values of L correspond to
wider FfTLg, resulting in higher sensitivity of ~Σ to spatial
frequencies outside T3D.
We emphasize that T3D includes values of jkj only be-

low 2k2; hence the physics behind the fundamental limit
of diffraction remain unbroken. Meanwhile, since the
Fourier transform of RI fluctuations of a finite length
with frequencies above 2k2 (as well as below 2k1) is non-
zero inside T3D, those fluctuations are detectable by ~Σ.
While ~Σ is most sensitive to 1∕kLS of 20–40 nm, it is not

obvious from the experimental perspective which inter-
nal structures this LS range refers to. Moreover, for prac-
tical cases of samples containing multiple LS, a universal
interval of LS having the largest contribution to the mea-
sured ~Σ cannot exist, as it depends on the sample struc-
ture. First, it is simply a matter of which LS and in what
proportion are present. Second, as shown above, the sen-
sitivity of ~Σ depends on L. And finally, owing to the non-
linear relation between nΔ�r� and ΦnΔ , contributions
from different internal structures are not independent.
Hence, the range of LS predominantly detected by ~Σ
can be found only for a specific structure. Below, we de-
termine the LS sensitivity range for samples with various
properties of internal organization, including analytically
defined as well as experimentally obtained forms of RI
spatial correlation function (SCF).

In order to identify whether a particular LS has a sig-
nificant contribution to ~Σ, we “remove” it from the
sample and calculate the consequent change in ~Σ (for
convenience, particle sizes rather than RI frequencies
are measured, [4]). Thus, for lower LS analysis, we intro-
duce a perturbed medium nl

Δ�r�, which represents the
original n�r� convolved with a 3D Gaussian filter G�r�
with FWHM W :nl

Δ�r� � �n∞
Δ �r� ⊗ G�r��TL, as a result of

which LS lower thanW are removed from n�r�. Similarly,
nh
Δ�r� represents n�r� with high LS removed: nh

Δ�r� �
nΔ�r� − nl

Δ�r� [Figs. 1(b)–1(d)]. Using Eq. (1), we obtain
the spectral variance of a microscope image that would
be measured from a sample if all LS lower ( ~Σl2) or higher
( ~Σh2) than W were removed:

~Σl2 � Γ2k2cL
Δk

Z
T3D

jF fn∞
Δ gF fGg ⊗ F fTLgj2d3k;

~Σh2 � Γ2k2cL
Δk

Z
T3D

jF fn∞
Δ g�1 − F fGg� ⊗ FfTLgj2d3k: (2)

Since an analytical solution for ~Σl and ~Σh cannot be
obtained, we evaluate Eq. (2) numerically. As before,
we generate a zero-mean random 3D array with the de-
sired form of SCF using MATLAB. Then we multiply the
Fourier transform of the medium either by F fG�r�g or by
�1 − F fG�r�g� (to remove short and long LS, respectively),
after which we convolve it with F fTLg to account for the
finite thickness. We obtain ~Σl2 and ~Σh2 by computing the
integral of the squared absolute value of the resultant ar-
ray within T3D.

Importantly, when a Gaussian particle described by W
is contained inside n∞

Δ �r�, only a fraction of that feature
may be included in the truncated medium n∞

Δ �r�TL.
Hence we define its effective size Weff as W multiplied
by the expected value of the particle fraction inside the
longitudinal interval �−L∕2; L∕2�:�−1� e−C

2�∕�C ���
π

p ��
Erf�C�, with Erf denoting the error function and
C � 2L

���������
ln 2

p
∕W .

We first consider the sample to have an exponential
SCF. We calculate the spectral variance measured after
removing low ( ~Σl) or high ( ~Σh) LS relative to that mea-
sured from the original sample ( ~Σ). Results of this LS per-
turbation analysis, shown in Fig. 3, lead to two important
conclusions. First, from the region of the steepest decline
in ~Σh∕ ~Σ and ~Σl∕ ~Σ, we find that ~Σ is most sensitive to LS
below 200 nm. Second, we determine that the limited L
most significantly affects the sensitivity of ~Σ to large
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Fig. 1. (a) Cross section of a single spatial-frequency medium with n1∕kLS of 100 nm. (b) Cross section of nΔ�r�with an exponential
SCF and the corresponding (c) nl

Δ�r� and (d) nh
Δ�r� for W � 100 nm.
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Fig. 2. (a) Cross section of PSD of n∞
Δ �r� (red) with kLS > 2k2,

and the PSD of the abridged sample nΔ�r� (blue). (b) ~Σ∕σnΓ2
01 as

a function of the spatial frequency of RI fluctuations for samples
with different thicknesses (all wavenumbers evaluated inside
the sample). Γ2

01 denotes �n0 − n1�2∕�n0 � n1�2.
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structural LS. This results in a qualitative difference in
the behavior of ~Σl and ~Σh calculated for different values
of L: whereas for L � ∞ they saturate at Weff > 200 nm,
for thin samples they remain slowly varying functions of
Weff . This is in agreement with the single-kLS analysis,
which established that smaller L expands the range of
detected LS.
Whereas we have shown that theoretically ~Σ can sense

all LS, in experiments its sensitivity is limited by the
signal-to-noise ratio, which varies largely depending on
the instrumentation and scattering power of the studied
sample. Thus, to give an estimate of the LS sensitivity of
~Σ, we define it as the range of Weff for which perturbing
the corresponding higher or lower LS within the sample
causes at least a 5% change in ~Σ. That is, the lower
(rmin) and upper (rmax) limits of LS sensitivity are the
values of W eff such that ~Σl�Weff � rmin� � 0.95 ~Σ and
~Σh�W eff � rmax� � 0.95 ~Σ. Applying this threshold, we
find the range of LS detected by ~Σ to be 22–240 nm
for L � 0.5 μm, 23–281 nm for L � 3 μm, and 22–171 nm
for L � ∞. For comparison, thresholds of a 1% and a 25%
change in ~Σ would define corresponding LS sensitivity
ranges of 9–360 nm and 56–124 nm for L � 0.5 μm,
10–360 nm and 56–124 nm for L � 3 μm, and 10–212
and 53–116 nm for L � ∞.
Naturally, since the range of LS detected by ~Σ depends

on the LS composition of the sample, rmin and rmax
change as a function of RI correlation length lc (Fig. 4).
While there is no analytical relationship describing rmin
and rmax in terms of lc and L, their qualitative behavior
is as follows. As lc increases, the amount of large LS

increases, and hence the range of detected LS shifts
upward, increasing rmin and rmax (note that rmax cannot
reach L and therefore saturates below it at L∕lc ≤ 3). Ex-
pectedly, the effect of a finite L on rmax is much greater in
magnitude than that on rmin. In contrast, at small lc the
sensitivity of ~Σ to shorter LS is emphasized, which is
quantified by values of rmin lower than that for L � ∞
and by rmax approaching its value corresponding to L �
∞ when L∕lc ≫ 3.

We next employ the present LS perturbation analysis
to determine which structures inside biological cells are
quantified by the spectral content of their microscope im-
age. We model RI distribution typical to biological cell
nuclei using mass-density SCF measured from transmis-
sion electron microscopy (TEM) images reported in [5].
Following standard TEM protocol, human colonic cell
nuclei were stained with specific to DNA osmium tetrox-
ide, sectioned, and imaged. The gray-scale image inten-
sity, assumed to be proportional to the local density of
chromatin, was used to compute the mass-density SCFs
of 36 micrographs, after which an average SCF of nuclear
material was obtained [5]. Since the RI of biological me-
dia is a linear function of mass density [2], the SCF of RI
distribution equals that of mass-density distribution with
a constant prefactor. The prefactors of mass-density SCF
are unknown (due to the variability in the depth of stain-
ing), and therefore we normalize the RI SCF to 1 at the
origin (r � 0).

We use the information contained in the experimental
SCF by following two approaches. First, we fit an expo-
nential SCF to the experimental (r2 value of the fit
between 39 and 1000 nm is 0.99) and find the exponential
correlation length lc to be 156 nm. We then follow the
previously described analysis for two values of L, 1.5,
and 6.0 μm (mimicking the thickness of squamous and
columnar epithelial cell nuclei). Second, to evaluate
how well the model of an exponentially correlated
medium applies to biological cells, we use the experi-
mental SCF directly. Since the experimental SCF is only
defined at r ≥ 39 nm (resolution of TEM micrographs),
we extend it to r � 0 using the fitted exponential SCF
at r < 39 nm. We then generate random media with
SCF equal to the experimental and perform LS sensitivity
analysis.

An excellent match between ~Σl∕ ~Σ and ~Σh∕ ~Σ calculated
based on analytical and experimental SCFs is obtained
for all values of W eff (Fig. 5). Applying the 5% threshold,
for L � 1.5 μm we find that ~Σ detects intranuclear struc-
tures from 25 to 427� 11 nm based on the analytical
SCF, and from 25 to 441� 11 nm based on the experi-
mental (uncertainty intervals correspond to the standard
error between 20 samples; error is not shown when it is
<0.5 nm). For L � 6 μm, we find that ~Σ detects struc-
tures from 23 to 324� 5 nm (for analytical SCF) and
from 23 to 334� 5 nm (for experimental). Additionally,
from ~Σl and ~Σh calculated for both thicknesses and types
of SCFs, we note that the largest contribution to ~Σ mea-
sured from biological cell nuclei comes from structures
smaller than 200 nm in size (Fig. 5).

To summarize, we establish that the interferometric
spectroscopy of scattered light has a unique ability to
detect spatial RI fluctuations of any frequency inside a
thin, weakly scattering sample. Most importantly, its
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shown for RI correlation length of 100 nm. Dotted horizontal
line indicates the threshold of a 5% change in ~Σ.
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sensitivity to subdiffractional spatial frequencies (above
2k2) is limited not by the diffraction of light but by the
signal-to-noise ratio of the detector.
Based on a 5% noise floor, we report the range of LS ~Σ

detects inside complex media with an exponential SCF.
The smallest detectable LS is determined to be ∼λ∕26
(22 nm) for all tested values af L and lc. The sensitivity
to large LS, in turn, is found to be highly dependent on L.
As a result, the largest detectable LS is ∼λ∕3 (200 nm) for
samples with short RI correlation lengths (lc < 100 nm)
and reaches values as high as ∼λ for lc > 100 nm. Precise
sensitivity limits for a wide range of sample parameters
relevant to the case of isolated biological cells are
reported.
We emphasize that the present analysis does not ad-

dress the sensitivity of ~Σ to material rearrangement
processes such as macromolecular aggregation or decon-
densation. Mass-preserving structural rearrangement is
characterized by alterations in the shape of PSD and a

constant total power of RI fluctuations. Thus the sensi-
tivity of ~Σ to such processes is best evaluated through
its functional dependence on parameters of the shape
of PSD, which is analogous to that reported in [1].

Finally, we substantiate the relevance of the presented
analysis and its conclusions to biological media, which
are not necessarily quantified by an exponential SCF.
We establish that spectral variance of an epi-illumination,
bright-field microscope image, utilized for the quantifica-
tion of subdiffractional intracellular structures in tech-
niques such as partial wave spectroscopic microscopy
[6], measures LS between 25 and 400 nm, which, in terms
of nuclear organization, correspond to structures from a
chromatin fiber to nucleoli and chromatin aggregates
barely resolvable by a conventional microscope. Accord-
ingly, we conclude that the largest contribution to ~Σ
measured from biological cell nuclei must come from
structures smaller than 200 nm in size. Large LS such
as nuclear size or shape would have virtually no contri-
bution to the monitored signal.
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(b) higher ( ~Σh∕ ~Σ) LS are perturbed. Calculation performed
for samples with SCF, which is experimentally measured
from TEM images (blue markers for samples with thickness
1.5 μm and green for 6.0 μm) and analytically defined as
exponential (blue solid line for L � 1.5 and green-dashed for
L � 6.0 μm).

August 1, 2014 / Vol. 39, No. 15 / OPTICS LETTERS 4293


