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Fractal Characterization of Chromatin Decompaction in Live Cells
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1Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; and 2Boston Medical Center, Department of Medicine,
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ABSTRACT Chromatin organization has a fundamental impact on the whole spectrum of genomic functions. Quantitative
characterization of the chromatin structure, particularly at submicron length scales where chromatin fractal globules are formed,
is critical to understanding this structure-function relationship. Such analysis is currently challenging due to the diffraction-limited
resolution of conventional light microscopy. We herein present an optical approach termed inverse spectroscopic optical coher-
ence tomography to characterize the mass density fractality of chromatin, and we apply the technique to observe chromatin de-
compaction in live cells. The technique makes it possible for the first time, to our knowledge, to sense intracellular morphology
with length-scale sensitivity from ~30 to 450 nm, thus primarily probing the higher-order chromatin structure, without resolving
the actual structures. We used chromatin decompaction due to inhibition of histone deacytelases and measured the subsequent
changes in the fractal dimension of the intracellular structure. The results were confirmed by transmission electron microscopy
and confocal fluorescence microscopy.
INTRODUCTION
The organization of chromatin requires the compaction of
over a meter of genetic material within the limited volume
of the nucleus. Consequently, chromatin compaction im-
pacts all processes requiring physical access to the DNA
sequence, such as gene transcription (1,2), DNA replication
(3), and repair (4). The primary unit of chromatin is the
nucleosome, which is composed of DNA wrapping around
histones in a structure resembling beads on a string of
DNA observed in vitro. This chromatin string further com-
pacts into chromatin higher-order structures following a hi-
erarchical model (5-7). The entire chromatin organization
spans across at least two orders of magnitude of length scale
from ~30 nm (size of chromatin fiber observed in vitro) to
several microns (size of the nucleus). Surprisingly, very lit-
tle is known of how chromatin is compacted and organized
in live cells, particularly at length scales below the Abbe
diffraction limits where higher-order chromatin organiza-
tions such as fractal globules are formed (8,9). Now, even
the structure of the secondary chromatin compaction
(i.e., chromatin fiber) is not entirely clear (10-13). Recent
discovery states that the chromatin fiber is composed of het-
erogeneous groups of nucleosome clusters instead of a com-
pacted nucleosome helix structure (14). Given the pivotal
role of the higher-order chromatin structures in the broad
spectrum of genome functions, it is critically important to
characterize the chromatin compaction in the submicron,
subdiffractional regime.
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There are emerging reports suggesting that chromatin is
organized in a fractal fashion, more evidently in the range of
length scales from ~0.4 to 1 mm (15). Fractals exhibit self-
similar structures, i.e., a characteristic structural detail can
be observed at any length scale. A more rigorous definition
of a fractal can be stated through the power-law spatial auto-
correlation function r(D�3) of a particular quantity, where r
is the spatial length and D < 3 (unitless) defines the fractal
dimension (15,16). To measure structure, the most direct
quantity is the mass density, whose autocorrelation functional
form is defined by themass-density fractal dimension,Dm. As
a means of measuring Dm, neutron scattering is probably the
most accurate method (17,18). It is reported in fixed nuclei
that the fractal dimension is ~2.9 from 0.5 to 5 mm and ~2.4
from 60 nm to 0.5 mm (17). Chromosome conformation cap-
ture techniques (Hi-C) have also determined a power-law rela-
tion between the chromatin contact probability and DNA
basepairs, indicating a mass density fractal distribution (8).
Translating the basepairs into physical distance (19), the
fractal dimension is close to 3 within the range of length scale
from ~0.5 to 1 mm. Optical imaging-based methods such as
texture analysis and rheology have also characterized such a
power-lawautocorrelation functionwith the fractal dimension
~2–3 in the cell nucleus (20,21). However, the inherent
diffraction limit only permits resolving of structural features
>0.4 mm. Angle-resolved low-coherence interferometry
(a/LCI) calculated the mass fractal dimension from live cells
as 1.6–2.0 at a broad length-scale range from 1 mm to 30 mm
(22,23). In the literature, the data reported on characterizing
chromatin compaction in the length scale below 0.3 mm are
sparse, particularly in live cells where structural integrity is
maintained (15).
http://dx.doi.org/10.1016/j.bpj.2015.10.014
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Being able to perform measurements in live cells, optical
spectroscopy can be an excellent alternative for character-
ization of chromatin compaction at length scales beyond
the resolution limit (<0.5 mm) (24,25). Indeed, it has been
demonstrated that optical spectroscopic analysis is able to
detect nanoscale structural alterations (26,27). We previ-
ously developed a technique termed inverse spectroscopic
optical coherence tomography (ISOCT), which uses coher-
ence gating to obtain backscattering power spectral density
from local three-dimensional (3D) tissue volume on the or-
der of 2� 103 mm3 (i.e., ~12� 12� 15 mm in the x, y, and z
dimensions) (28-30). By measuring the power-law spectral
dependence, the fractal dimension of the refractive index
(RI) correlation function can be indirectly recovered. Given
the linear relationship between RI and macromolecular
mass density, ISOCT is then able to quantify D (31,32).
The unique advantage of ISOCT is that the measurement
of D is sensitive to structural alterations at length scales
from ~30 nm to ~450 nm, beyond the resolution limit of
conventional OCT (28).

Here, we used ISOCT to quantify the fractality of live
cells undergoing chromatin remodeling. Chromatin
compaction is partly mediated by histone deacetylases
(HDACs), a class of enzyme that allows DNA to wrap
around histones. We inhibited the HDACs using valproic
acid (VPA) to decompact the overall chromatin structure
and determine changes in fractality (33,34). Furthermore,
we used high-resolution transmission electron microscopy
(TEM) imaging and confocal fluorescence microscopy of
the nuclei to visualize and determine the effect of chromatin
decompaction in fixed cells. Finally, the progression of
chromatin decompaction in live cells is observed and quan-
tified over time. Using multiple techniques, we consistently
observed a reduced fractal dimension, D, upon treatment
with VPA, suggesting a sharper mass-density autocorrela-
tion function at subdiffractional regime (i.e., the autocorre-
lation function decays faster at longer spatial length).

This article is organized as follows. The Materials and
Methods section describes the experimental and data-pro-
cessing methods. The Results section will introduce the the-
ory and explain the experimental results. The Discussion
and Conclusion sections will discuss the implication of
this study and conclude the article.
MATERIALS AND METHODS

Cell culture and treatment

Human colon cancer HT-29 cells were grown in McCoy’s 5A medium

(ATCC, Manassas, VA) supplemented with 10% fetal bovine serum and

50 mg/mL penicillin/streptomycin in a 5% CO2 environment at 37�C.
The C-terminus Src kinase (CSK) shRNA stably transfected HT-29 cells

were selected as a clonal population and grown as previously reported

(35). CSK is a key tumor suppressor in colorectal cancer, where knockdown

in HT-29 cells leads to increased aggressiveness and alterations in optical

properties (35-38). For pharmacological inhibition of HDACs, increasing
concentrations of VPA (Sigma-Aldrich, St. Louis, MO) were applied to

cells based on previous results (33,39). Concentrations tested ranged

from 0.1 mM to 1.5 mM and cells were treated for 1, 2, 4, 6, and 24 h before

cell-viability and ISOCT measurements.
WST-1 cell viability assay

CSK knockdown HT-29 cells were incubated in normal conditions for 48 h

in 96-well plates. After VPA treatment, 4-{3-(4-iodophenyl)-2-(4-nitro-

phenyl)-2H-5-tetrazolio}-1, 3-benzene disufonate reagent (WST-1) (Roche

Diagnostics, Indianapolis, IN) was added to the plates for cell-viability

detection. After 45 min incubation with WST, the absorbance of the plate

was read at 440 nm and 600 nm using a Spectramax Plus spectrophotometer

plate reader (Molecular Devices, Sunnyvale, CA).
Confocal microscopy and histogram analysis

Approximately 50,000 cells were grown overnight on glass coverslips.

Cells were then fixed in 4% paraformaldehyde for 20 min on ice and

washed twice with Dulbecco’s phosphate-buffered saline (PBS) (ATCC)

for 5 min each. Next, cells were permeabilized using 0.1% Triton X-100

in PBS for 20 min at room temperature. Then, 1% bovine serum albumin

in PBS was applied for blocking for 20 min. Chromatin staining was carried

out using TOPRO3 (Invitrogen, Carlsbad, CA) for 15 min. Finally, the cov-

erslips were mounted in ProLong Gold antifade reagent (Invitrogen) onto

glass slides. Specimens were imaged using a confocal microscope (Leica

SP5 with Leica Systems software, Wetzlar, Germany). For the image anal-

ysis, intensity histograms were generated using ImageJ (NIH, Bethesda,

MD). Intensity histograms were normalized to the pixel count for each nu-

cleus and the standard deviation of the resultant intensity was calculated in

Microsoft Excel.
Transmission electron microscopy preparation
and image analysis

Cells were treated with 0.5 mMVPA for 24 h. Cell pellets were collected by

centrifugation at 900 rpm. The cell pellets were then immediately frozen at

high pressure using a Leica EM-PACT2 high-pressure freezer at the Biolog-

ical Imaging Facility of Northwestern University. Next, automatic freeze

substitution was carried out using a Leica AFS2 system. The cell samples

were embedded in Epon 812 resin (Electron Microscopy Sciences, Hatfield,

PA) and finally thin-sectioned into 90 nm sections onto copper grids using a

Leica Ultracut S microtome. High-resolution digital images of samples

were collected using a JEOL 1230 (Tokyo, Japan) and Advanced Micro-

scopy Techniques (Woburn, MA) imaging software.

To calculate the fractal dimensions, DTEM, of the TEM image-correlation

function on cell nuclei and whole cells, we first manually lineated the nu-

clear periphery and selected only the nuclear images. Then, we manually

lineated the cell periphery to include the whole cell. In the case where

some parts of a cell were outside the field of view, we used the image

boundary as the periphery. The mean value of the nuclear region or a whole

cell was subtracted and a 2D Fourier transform was performed to obtain the

reciprocal image in the Fourier domain. Based on the Wiener-Khinchin the-

orem, we squared the absolute values of the reciprocal image in the fre-

quency domain and performed a 2D inverse Fourier transform to yield

the 2D correlation map. The final correlation function was obtained by a

radial averaging on the 2D correlation map around the origin. The image

correlation function, Cr(rd), was then fitted by a power-law equation:

CrðrdÞ ¼ a � rDTEM�3
d ; (1)

where rd (mm) is the spatial displacement, a is constant, depending on the

magnitude of the image intensity fluctuation, andD is the fractal dimen-
TEM

sion calculated from TEM images.
Biophysical Journal 109(11) 2218–2226
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ISOCT instrumentation and data processing

The setup of the OCT instrumentation has been described in detail previ-

ously (29). Briefly, a free-space Fourier-domain OCT (FDOCT) configura-

tion was adopted with an illumination wavelength ranging from 650 to

800 nm, as illustrated in Fig. 1 A. A cube beamsplitter was used to create

a Michelson interferometer and the light was focused on the sample by an

objective lens. A two-dimensional galvanometer was used to steer the

beam over the sample to obtain transverse discrimination. A 2048-pixel

line-scanning camera was used to acquire the interference spectrum.

The axial and transversal resolution were estimated at 1.5 and 12 mm,

respectively. A raster scanning protocol was implemented to acquire

signals. An area of 2 mm2 was scanned at 256 � 256 pixels transver-

sally. The exposure time was 300 ms, yielding the total acquisition time

of ~25 s.

To calculate D, the following data processing was performed. The raw

spectrum was first preprocessed by normalization of the source spectrum,

subtraction of the DC components, and resampling with an equal wavenum-

ber interval. Then, a short-time inverse Fourier transform with a sweeping

Gaussian window was performed to obtain a series of wavelength-depen-

dent 3D images, as in Fig. 1 B. The full width at half-maximum of the

Gaussian window was kw ¼ 0.36 mm�1. After applying short-time inverse

Fourier transform, the axial resolution was relaxed to ~15 mm. The intensity

from the top 200 mm of each cell pellet was averaged to yield a spectral pro-

file, I(k). A power-law function was used to fit the spectra with the exponent

equal to 2 � D/2 (Fig. 1 C) (29):

IðkÞ � k2�D=2; (2)

where k is the wavenumber, k ¼ 2p/l.
RESULTS

Optical measurement of mass-density fractal
dimension D

The fundamental building blocks of living cells are macro-
molecules. Based on the Gladstone-Dale equation, tissue
RI is proportional to the local macromolecular mass
density (31,32):
Biophysical Journal 109(11) 2218–2226
n ¼ n0 þ ra; (3)

where r (g/mL) is the local mass density of the solid mate-

rial (e.g., macromolecules) and a is the RI increment, usu-
ally equal to 0.17 mL/g for biological materials. n0 is the
RI of water. The heterogeneous distribution of mass density
creates fluctuation of RI and leads to elastic optical
scattering.

Because of the heterogeneous nature of the mass-density
distribution, we modeled tissue as a random medium with
mass density continuously fluctuating. The most compre-
hensive way to describe such a medium is by its correlation
function, i.e., the mass-density correlation function (40-42).
We used a three-parameter functional family, the Whittle-
Matérn (WM) function, to quantify the function form (43).
This versatile functional family covers essentially all the
commonly used correlation functions, including the po-
wer-law function, the Booker-Gordon formula (exponential
correlation), the Gaussian model, and the Kolmogorov spec-
trum (von Kármán spectrum). The WM functional family is
formulated as

BnðrdÞ ¼ An

�
rd
Ln

�ðD�3Þ=2
KðD�3Þ=2

�
rd
Ln

�
; (4)

where K{.} is a modified Bessel function of the second type;
An is the amplitude of the RI fluctuation; D is the functional
shape factor determining the type of the function; and Ln is
the length scale of the correlation function whose exact
meaning depends on D (24,30). Examples of different func-
tional shapes under differentD are plotted in Fig. 1D. When
0 < D < 3 , the correlation function has the form of a power
law and the tissue is organized as a fractal. Given the linear
relationship between RI and mass density, D is the mass-
FIGURE 1 Principle of ISOCT. (A) A Michel-

son interferometry with a low temporal coherence

source was used to coherently gate the backscat-

tered light from different depths. (B) A short-

time Fourier transform was used to obtain local

spectral profiles by sweeping a Gaussian spectral

window through the interferogram. (C) D was

calculated by fitting the local spectra with a po-

wer-law function. (D) Examples of WM correla-

tion functions at different D values, which

established the power-law behavior of the back-

scattering spectrum. To see this figure in color,

go online.
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density fractal dimension, Dm. When 3 < D < 4, the func-
tional form is a stretched exponential. For D ¼ 4, Bn (rd) is
an exponential function, where Bn (Ln) ¼ Bn (0) e

�1. When
D approaches infinity, the function turns into a Gaussian
form.

With ISOCT, the coherent gating from the interferometry
allows us to interrogate a microscopic volume on the order
of 10 mm3; thus, the first-order Born approximation can be
applied to predict the scattering power spectral density, F,
by the Fourier transform of Bn(rd), F(k) ¼ FT(Bn) (43).
Then, the differential cross section per unit volume, s(q,
f), can be analytically expressed, where q and f denote
the scattering angle in a spherical coordinate. Since OCT
detects the backscattered light, the light intensity is propor-
tional to the backscattering coefficient, mb (30). The condi-
tioned function of mb is

mb ¼ An2

�
D
2þ1

2

�
p

3
2G

�
D

2

�
L3�D
n k4�D; kLn [ 1 (5)

where G is the gamma function. The backscattering spec-

trum is a power-law function to k, where the exponent is
equal to 4 � D.

OCT uses a low-coherence light source covering a wide
optical bandwidth. The spectral information inherently is
contained in the interferogram. By using a time-frequency
analysis such as short-time inverse Fourier transform, the
spectrum from each spatial voxel can be extracted. The
OCT intensity at the surface is approximated as (30)

I2ðkÞ ¼ I20rmbðkÞL � k4�D; (6)

where I0 is the illumination intensity, r is the reflectance

on the reference arm, and L is the temporal coherence length
of the source. Then, a power-law function of k is fitted to
obtain the exponent and the mass fractal dimension, D.
Chromatin decompaction induced by VPA:
microscopy cross validation

To observe the effect of chromatin decompaction, we ac-
quired TEM images of cell nuclei treated with the HDAC in-
hibitor VPA. Following standard TEM sample processing
with OsO4, the distribution of heterochromatin and euchro-
matin can be distinctly identified, as in Fig. 2 A. We calcu-
lated and compared the image-correlation functions of
nuclei from control (untreated) and 0.5-mM-VPA-treated
CSK shRNA knockdown HT-29 cells, as plotted in
Fig. 2 B. The correlation function over the range 20 nm to
0.1 mm decays faster with increasing rd,, indicating more
fine structures of relaxed chromatin. We calculated the
fractal dimension, DTEM, based on the image correlation
function, and VPA-treated cells exhibited lower DTEM

(Fig. 2 C). Importantly, DTEM calculated from whole cells
was also lower in VPA-treated cells than in controls, which
indicates that the relaxation of chromatin in nuclei was a
major contributor to the whole-cell DTEM changes. Note
that DTEM calculated from TEM images is not exactly equal
to the actual mass-density fractal dimension, because the
staining does not represent the true value of mass density
but rather the chemical affinity of the OsO4. Nonetheless,
we can use TEM analysis here as a qualitative confirmation
of chromatin decompaction at nanometer scales.

Next,we confirmed the dose-dependent chromatin decom-
paction caused by VPA. Chromatin was stained with
TOPRO3 and visualized using confocal fluorescence micro-
scopy (Fig. 2D). The chromatin heterogeneity wasmeasured
by calculating the standard deviation of the fluorescence-in-
tensity distribution (Fig. 2 E). A large deviation of the inten-
sity indicated a more compacted chromatin, whereas a
smaller deviation denotes a less compacted chromatin struc-
ture. Fig. 2, D and E, shows a typical nucleus image and its
corresponding intensity histogram of fluorescence, respec-
tively. We observed progressive chromatin decompaction
with increasing VPA concentration, as shown in Fig. 2 F.
Together, the TEMand confocal results confirmed chromatin
decompaction upon treatment with VPA.
ISOCT image of chromatin decompaction in live
cells

Although confocal microscopy analysis of DNA distribution
showed differences in chromatin structure with increasing
concentrations of VPA, this technique lacks sensitivity to
nanoscale structures. Therefore, to quantify intact chromatin
structure at the nanoscale level, we took ISOCT measure-
ments on live-cell pellets with or without VPA treatment.
From the confocal images of cell nuclei, we could only see
a slight shrinkage of chromatin structure at the highest
VPA concentration (1.5 mM VPA) in cells treated for 24 h
(Fig. 3, A–D). Although there is no visual difference from
the conventional gray-scale OCT images (Fig. 3, E–H), co-
lor-coded ISOCT images show significant differences be-
tween cells treated with 1.5 mM VPA and controls, as
shown in Fig. 3, I–L. The change of D values was more
obvious in the cores of the pellets, where the cell density
was higher than in the superficial layer due to the collection
of cells. Specifically, therewere higherD values from control
CSK cells than from those treated with VPA. D decreased
with chromatin decompaction, which is also consistent
with the above TEM and confocal image analysis, as shown
in Fig. 4 A. Bn(rd) can also be recovered over the sensitive
length scale, showing a flatter mass-density autocorrelation
function with the chromatin decompaction (i.e., the autocor-
relation function decaysmore slowly at longer spatial length)
(Fig. 4 B). Fractal changes in the chromatin structure corre-
spond to biological alterations, namely, transcriptional regu-
lation. Compared with conventional microscopy techniques,
ISOCT quantifies these fractal changes at subdiffractional
length scales down to ~40 nm (28).
Biophysical Journal 109(11) 2218–2226



FIGURE 2 Verification of chromatin decompaction. (A) A representative image of CSK knockdown cell with nuclear and whole cellular boundary

lineated. Scale bar, 2 mm. (B) Normalized image correlation function from nuclei (n ¼ 18 cells for control, n ¼ 20 cells treated). The gray area indicated

the range of length scale where the difference between control and treated cells was significant by two sample t-tests (p < 0.05). Error bars indicate the

mean 5 SE. (C) Fitted DTEM values from C(r) in control and treated cells. (D) Magnified image of the nucleus after TOPRO 3 staining by confocal fluo-

rescence microscopy. (E) The corresponding fluorescence intensity histogram from (D). The intensity standard deviation (std) indicates the heterogeneity of

the chromatin. (F) Intensity standard deviation from cells treated with different concentrations of VPA for 24 h. *p < 0.05.
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Time course monitor on chromatin decompaction

HDAC inhibitors, including VPA, induce chromatin decom-
paction but also affect other cellular processes, such as
apoptosis. To observe the kinetics ofVPA-induced chromatin
decompaction, we performed a time-course experiment, as
shown in Fig. 4 C. Treatment with 0.5 mM VPA showed a
progressive decrease ofD using ISOCTwith prolonged treat-
ment. However, this change has no correlation with cell
viability, as shown in Fig. 4 D, suggesting that the observed
trend is caused by the extended effect of VPA on chromatin
compaction rather than by cellular apoptosis alone. Further-
more, the time-course study showed that the significant
change in D happens at ~2–4 h, which conforms with a pre-
vious study reporting that the maximum effect of VPA is
reached at ~3 h (44). Also, D did not change significantly af-
ter 4 h treatment, indicating that the effect of VPA has suffi-
ciently taken effect. This also explainswhywe do not observe
dose dependence in Fig. 4 A after 24 h treatment.
DISCUSSION

The dysregulation of chromatin compaction is a critical pro-
cess, particularly in cancers, given the central role of chro-
Biophysical Journal 109(11) 2218–2226
matin in cell function. Chromatin alterations can occur at
the nucleosomal level (~10 nm) through modifications of
the histones, such as by methylation, acetylation, and phos-
phorylation (45,46). Higher-order structural organization
(~30 nm to 1 mm) is regulated through cohesin and conden-
sin protein complexes. Although the importance of chro-
matin compaction is clearly evident, recent research has
attempted to bridge chromatin structure and cellular func-
tion using emerging technologies and analysis to charac-
terize the fractality of chromatin compaction (8,15,17).
However, it is still challenging to perform such a character-
ization at subdiffractional length scales in live cells.

Here, we demonstrate, to our knowledge, a novel optical
approach, ISOCT, to characterize the fractality of chromatin
decompaction in live cells at a length scale from ~30 nm to
450 nm. We adopted a well-established in vitro model using
VPA to induce chromatin relaxation. The chromatin decom-
paction was confirmed by TEM and confocal analysis.
Importantly, we found that upon treatment with VPA, cells
have a fractal mass density distribution (D < 3). We consis-
tently observed a reduced fractal dimension, D, upon
treatment with VPA at various concentrations, suggesting
a sharper mass-density autocorrelation function in the
subdiffractional regime. Using the formulism of the WM



FIGURE 3 Confocal fluorescence, OCT, and ISOCT images of CSK knockdown (CSK�) cells with VPA treatment. (A–D) TOPRO3 labels the accessible

DNA distribution. (E–H) Gray-scale OCT images. (I–L) ISOCT images pseudocolored with D. Scale bars, 5 mm in (A)–(H) and 200 mm in (E)–(L).
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correlation functional family, we have measured and charac-
terized various tissues with D values around 3 where, in
some cases, D went above 3 (27,29,30,47,48). In the WM
model, the shape of the mass-density correlation function
changes from fractal to stretched exponential when
3 < D < 4. It is worth pointing out that when D ¼ 3, the
phase function has exactly the same shape as the Henyey-
Greenstein (HG) phase function, which has been one of
FIGURE 4 (A) Bar plots showing ISOCT mea-

surements of D from CSK knockdown cells after

24 h treatment with different concentrations of

VPA. (B) The recovered Bn(rd) by the measured

D from control cells and those treated with

0.5 mM VPA. The functions were normalized at

rd ¼ 1 mm. The gray area shows the length scale

of sensitivity of D measurement by ISOCT.

(C) The progression of D changes after different

incubation times with 0.5 mMVPA. (D) The corre-

sponding cell viability from cells in (C). Error bars

indicate the mean 5 SE. *p < 0.05. To see this

figure in color, go online.

Biophysical Journal 109(11) 2218–2226
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the most popular models in tissue biophotonics (28). Thus,
measuring D around 3 is consistent with the convention of
using the HG phase function to characterize tissue optical
properties.

When characterizing the fractal dimension from
biological samples, we should also pay attention to the
length-scale range of the measurements. Although the
mathematical definition of the power-law function extends
over an infinite length scale, in reality, the power-law func-
tion is always best fitted within a particular length-scale
range. This is best shown in the neutron-scattering study
on fixed nuclei by D. V. Lebedev et al., where the fractal
dimension was significantly different in two different
length scales (17). As summarized in Table 1, neutron
scattering and rheology covered the length scale to a
subdiffractional range down to 60 nm. TEM studied length
scales from 0.01 to 0.4 mm. Hi-C characterized length
scales above 0.5 mm. Imaging-based methods and a/LCI
measure fractal dimension from ~0.5 mm up to 30 mm.
At a similar length scale, our measured value is slightly
higher than the values from neutron scattering and
rheology, but within a range similar to that of the TEM
study (50).

The study has several biological and clinical implica-
tions. First, from a biological perspective, HDACs are
one of the key enzymes involved in higher-order chromatin
remodeling and are directly associated with a broad spec-
trum of genome functions, such as apoptosis, differentia-
tion, and angiogenesis. The capability of monitoring the
HDAC-associated chromatin remodeling at submicron
length scales opens opportunities for noninvasive and
in situ study of the role of chromatin compaction in the
above physiological phenomenon. Second, there are
emerging clinical applications of elastic light scatting in
cancer detection based on these ultrastructural alterations
(51). One of the applications is the detection of field carci-
nogenesis, the earliest stage of carcinogenesis (52). The
concept of field carcinogenesis is that a diffuse injury
from genetic/environmental stimuli proceeds and results
in local tumorigenesis (53). It has been consistently re-
ported that a higher D is present in field carcinogenesis
across different cancer types (colorectal cancer (54),
pancreatic cancer (55), and lung cancer (56)), and has
been measured by different optical methods (low-coher-
TABLE 1 Summary of methods for measuring cell nuclear fractal d

Method Fractal Dimension L

Neutron scattering (17,18) 2.2–3.2

Hi-C (8) 2.92

Rheology (21) 2.2–2.6

a/LCI (22,23) 1.6–2.0

Box counting (23,49) 1.6–1.8, 1.2–1.3

Textural analysis (20) 2.8–2.9

TEM (50) 2.6–3.4

ISOCT 2.5–3.6
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ence enhanced backscattering (55), elastic backscattering
spectrometry (47), and ISOCT (30)). Recently, a TEM
study showed that chromatin compaction was elevated in
colorectal cancer field carcinogenesis, which is associated
with overexpression of HDACs (33,50). The study pre-
sented here directly demonstrates that higher D could be
a result of HDAC overexpression, which implies that
chromatin compaction could be a universal marker for
field carcinogenesis. Third, given the pivotal role of
HDACs in cancer pathology, various HDAC inhibitors
have been developed as chemotherapy agents (57). Being
able to quantify chromatin remodeling upon HDAC
inhibition treatment could serve as an evaluation of drug
effectiveness.

The limitation of this study is that we cannot explicitly
exclude contributions from the cytoplasm. However, given
that the nucleus is the biggest scatterer inside cells and
accounts for >50% of cell volume in HT-29 cells (36),
the changes that we observed should be reasonably
dominated by chromatin decompaction. This is also sup-
ported by TEM image analysis showing that the nuclei
contributed mostly to the whole-cell DTEM changes
(Fig. 2 C). Other optical spectroscopic analysis based on
higher resolution, such as optical coherence microscopy,
could be further deployed to investigate the cell nucleus
more specifically.
CONCLUSIONS

Here, we introduce, to our knowledge, a novel optical
approach via ISOCT to characterize chromatin decompac-
tion induced by HDAC inhibitors over length scales ranging
from 30 nm to 450 nm in live cells (28). A decrease ofDwas
reported when chromatin compaction was relaxed. The
method opens the possibility of characterizing higher-order
chromatin remodeling at the submicron length scale in live
cells in situ.
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