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Abstract: Partial Wave Spectroscopic (PWS) Microscopy has proven 
effective at detecting nanoscale hallmarks of carcinogenesis in 
histologically normal-appearing cells. The current method of data analysis 
requires acquisition of a three-dimensional data cube, consisting of multiple 
images taken at different illumination wavelengths, limiting the technique 
to data acquisition on ~30 individual cells per slide. To enable high 
throughput data acquisition and whole-slide imaging, new analysis 
procedures were developed that require fewer wavelengths in the same 500-
700nm range for spectral analysis. The nanoscale sensitivity of the new 
analysis techniques was validated (i) theoretically, using finite-difference 
time-domain solutions of Maxwell’s equations, as well as (ii) 
experimentally, by measuring nanostructural alterations associated with 
carcinogenesis in biological cells. 
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1. Introduction

Reducing cancer mortality rates is a significant health concern and early detection has been 
recognized as a key factor in this effort [1]. Screening tools such as whole-slide microscopy 
and digital pathology have enabled greater throughput and improved rates of lesion detection, 
particularly when used in conjunction with the Pap (Papanicolaou) test for cervical cancer 
screening [2, 3]. Multiple studies have also shown concordance between whole slide 
imaging/digital pathology instruments and light microscopy in diagnostic applications [2, 4] 
[5]. Despite these results, whole-slide imaging has been limited in its application as a 
minimally invasive screening technique due to a lack of easily accessible organ sites that 
harbor biomarkers of disease detectable with the diffraction-limited resolution of current 
whole-slide imaging systems. 

Partial Wave Spectroscopic (PWS) microscopy is a spectroscopic microscopy technique 
that has proven to be sensitive to changes associated with early carcinogenesis. PWS 
microscopy achieves sensitivity to nanoscale structures within biological cells by using the 
spectroscopic content of microscope images, and quantitatively measures nanoarchitectural 
changes in cells associated with carcinogenesis [6, 7]. These intracellular, macromolecular 
alterations are recognizable as some of the earliest indicators of carcinogenesis and are 
detectable throughout an affected organ, not just at the tumor site, via a phenomenon known 
as the field effect of carcinogenesis [8, 9]. Because PWS is sensitive to nanoscale structure 
below the diffraction limit of traditional microscopy systems, including those used for whole-
slide imaging, it can be used for minimally invasive cancer screening via the field effect. In 
previous clinical experiments, PWS has been shown to be effective at detecting tumors in 
multiple organ sites, including the lung, colon, esophagus, pancreas, prostate, etc [10–12]. 

While PWS microscopy has demonstrated nanoscale sensitivity and diagnostic capability 
with several major forms of cancer, its throughput has been poor due to the requirement of 
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collecting ~200 wavelengths from the visible spectrum (500-700nm with 1nm sampling) for 
quantitative data analysis. As a result, performance of the technique has been limited, even 
with the current high-throughput version of the instrument, which utilizes an acousto-optic 
tunable filter (AOTF) for high speed spectral filtering [13]. To improve the performance of 
PWS microscopy and extend its capabilities to measurements of larger samples such as tissue 
sections, a whole-slide imaging approach has been developed. Specifically, changes in the 
analysis and acquisition procedures have been introduced to reduce the number of 
wavelengths collected, allowing an order of magnitude improvement in the time for data 
collection and analysis. 

2. Experimental methods

2.1 Instrumentation and data acquisition 

To collect high-resolution spectral data cubes (x,y,λ), a recently developed High-Throughput 
version of the PWS microscope was used [13]. This instrument used an AOTF (HSI-300, 
Gooch and Housego, Orlando, Florida) for spectral filtration of the Epi-illumination light 
from a Xenon lamp (66907-100XF-R1, Newport Corporation, Irvine, California) in 
combination with a high-speed collection camera (Hamamatsu ORCA Flash 2.8, Bridgewater, 
New Jersey). Unique spectra were obtained from each spatial position within a sample using a 
low illumination numerical aperture (NA ~0.15) to approximate plane wave illumination and 
a high collection NA (NA ~0.6) was used with a total magnification of approximately 40X 
(LUCPlanFL N, Olympus, Center Valley, Pennsylvania). The total magnification of the 
system ensured that the pixel size at the sample plane was less than the diffraction limited 
resolution. An automated sample stage (LSQ075B-E01, Zaber Technologies, Vancouver, BC) 
allowed rapid and programmable collection from multiple fields of view as well as whole-
slide imaging. For full-spectrum data collection, 500-700nm with 1nm sampling, a subset of 
the cell population on a sample slide was measured, typically ~30 cells. These cells were 
selected manually by a user from a low resolution whole-slide image before high-resolution 
spectral imaging was performed. Whole-slide spectral imaging was achieved by reducing the 
number of wavelengths measured from 201 in the full-spectrum approach to 15 wavelengths 
over the same range from 500 to 700nm. With this approach spectral measurements of the 
entire cell population on a sample slide were completed in a single acquisition step. 

2.2 Full-spectrum analysis 

Nanoscale sensitivity of the PWS microscope has been achieved via a spectral analysis 
technique that utilizes light in the visible spectrum, 500-700nm with 1nm sampling. While the 
PWS instrument has diffraction limited spatial imaging resolution as expected for a far field 
optical microscope, the spectrum of the scattered light at each pixel in the image from weakly 
scattering samples contains information sufficient to quantify 3-D refractive index 
fluctuations at length scales well below the diffraction limit [7]. When cells mounted on a 
glass slide and exposed to air are spectrally imaged in the Epi-illumination configuration of 
the PWS microscope the standard deviation of the spectrum of the scattered light at each pixel 
(Σ) quantifies the refractive index fluctuations at nanometer length scales limited only by the 
signal-to-noise ratio of the system [7]. For a sample with exponentially-correlated spatial RI 
distribution with standard deviation σn and characteristic length scale lc, Σ is defined by Eq. 
(1), where NA is the numerical aperture of light collection, kc is the central wavenumber of 
the bandwidth of light, and Γ is composed of Fresnel coefficients to account for light 
reflection and transmission at the sample-air interface [7]. 
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Using this approach it has been shown that given a 5% noise floor, PWS microscopy is 
sensitive to a range of length scales from ~22nm to at least 200nm depending on sample 
structure and thickness [14]. Thus, PWS is a promising tool for detecting early-stage 
microscopically undetectable tumorigenic alterations in biological cells and tissues such as 
changes in chromatin organization [9]. 

2.3 New sparse-spectrum analysis algorithms 

The full-spectrum analysis employed originally was designed to maximize the SNR by 
oversampling both in spatial (multiple image pixels per diffraction-limited spot) and spectral 
(multiple wavelengths sampled within the spectral resolution of the detector) dimensions 
ensuring that a spatially-resolved image Σ(x,y) could be generated. As a result of this 
oversampling, data acquisition and analysis can be modified when the SNR is high to 
prioritize speed. New analysis algorithms specifically for sparse spectral data have been 
developed for PWS microscopy to increase the speed of data collection and processing 
allowing for whole-slide imaging with the PWS microscope. These new methods allow the 
number of wavelengths used for analysis and thus the number of wavelengths collected to be 
reduced from a 1nm sampling step size covering the visible spectrum (500-700 nm) to a 
sparse spectrum consisting of 15 wavelengths covering the same spectral range. 

These 15 wavelengths are unevenly spaced with the highest concentration between 540 
and 560nm and the remainder distributed evenly over the entire 500-700nm range. This 
distribution balances spectral resolution and range over the spectrum of interest and allows 
quantification of the refractive index fluctuations from the signal, maintaining nanoscale 
sensitivity. Specifically, the new sparse spectrum includes the wavelengths: 500, 525, 540, 
543, 546, 549, 552, 555, 558, 575, 600, 625, 650, 675, and 700nm. The densely spaced 
wavelengths improve diagnostic performance in stained samples when centered at the most 
diagnostic wavelengths due to an amplification of scattering that corresponds to the 
absorption spectrum of the dye [15]. In unstained samples, this region can be chosen 
arbitrarily since similar diagnostic performance can be achieved with any wavelengths. Since 
we used Papanicolaou stain on some samples in this study, we chose to center the more 
densely sampled wavelength region around the most diagnostic wavelength for this staining 
protocol, 550nm. Using these wavelengths two new markers for spectral analysis have been 
developed and have been shown to be equivalent to the Σ parameter currently used for full-
spectrum analysis. 

2.4 Spatial analysis at a single wavelength, (Σx,y) 

The first such marker is the spatial standard deviation of reflectance (Σx,y). When imaging 
capabilities are not required, it is possible to take advantage of the mathematical fact that the 
standard deviation of reflectance evaluated at one wavenumber, (Σx,y) is equivalent to the 
standard deviation of reflectance across wavelengths averaged over a region of pixels. As a 
result, the only difference between Σ given in Eq. (1) and Σx,y is the wavenumber k. Σ is 
evaluated at the central wavenumber, kc, while Σx,y is evaluated at the chosen single 
wavenumber k. To increase SNR, we evaluated Σx,y at several wavelengths (centered at kc), 
and averaged the obtained values. Experimentally, Σx,y is calculated using Eq. (2), where 
R(x,y) is the reflectance intensity at the pixel (x,y), and Nx,y is the total number of pixels in the 
region of interest. In addition, since Σx,y can be calculated at any individual wavelength, it can 
be used to determine the most diagnostic wavelengths for a specific sample preparation 
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protocol since scattering enhancement due to staining with absorbing dyes makes certain 
wavelengths more diagnostic than others [15]. 
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While the Σx,y approach yields an equivalent term to the mean Σ of a region of interest, it does 
not generate an image of the nanoscale disorder in a sample in the manner that the traditional 
Σ analysis achieves. To allow for this spatial mapping of the nanoscale disorder a second new 
marker was developed (Σλ). This marker is calculated as the standard deviation of the reduced 
spectra at each pixel. Σλ is calculated using Eq. (3), where R(λ) is the reflectance at the 
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For imaging purposes, a 2-D mean filter was applied to the resulting Σλ images within a 4x4 
neighborhood to create an image that maps the nanoscale disorder within a sample. Mean 
filtering reduces noise and variability in the image due to the reduced length of the spectral 
data. Spatial image resolution is not decreased significantly by the mean filter since the pixel 
size at the sample plane (~182nm) is less than the diffraction limited resolution (~500nm). 

2.6 Theoretical validation of the analysis 

The newly proposed markers of nanoscale disorder were validated via numerical simulations 
of an experiment based on rigorous 3-D finite-difference time-domain (FDTD) solutions of 
Maxwell's equations [16]. To simulate wavelength-resolved microscope images of 
inhomogeneous samples, software implementation of the 3-D FDTD method called Angora 
was used [17, 18]. Bright-field, plane-wave epi-illumination microscope images with a light 
collection numerical aperture (NA) = 0.6 were synthesized for samples with a refractive index 
distribution resembling that of ethanol-fixed biological cells: average refractive index 1.53 
[19, 20], spatial standard deviation of 0.05 [21], and a sample thickness 2μm. The spatial 
correlation of refractive index fluctuations was set to be exponential with correlation length 
(lc) of 20 and 50nm, while the refractive indices of the top and bottom media were set to be 1 
and 1.53 respectively. While this simulation models the case of an ethanol-fixed cell mounted 
on glass, the proposed markers are equally valid for any sample geometry where there is an 
opposing refractive index match and mismatch between the sample-medium interface and the 
sample-substrate interface, such as can occur in live-cell samples or tissue sections [7]. 

2.7 Experimental validation 

Each of the proposed markers were also tested experimentally using data previously collected 
on the High-Throughput PWS system for full-spectrum analysis [13]. This included a case-
control cell line experiment and two human-subjects cancer screening experiments. The cell 
line experiment used control vector (CV) HT29 human colorectal adenocarcinoma cells and 
epidermal growth factor (EGFR) knock-down HT29 cells as a less aggressive genetic variant. 
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The first human subjects experiment was a lung cancer screening experiment consisting of 23 
patients, 9 with lung cancer and 14 age, sex, and smoking history matched controls. Buccal 
cells were collected by brushing from each patient’s cheek and these brushings were then 
smeared onto a glass slide before being fixed in 95% ethanol and stained using Papanicolaou 
stain [13]. The second human subjects experiment included data from a prostate cancer risk 
assessment experiment. This consisted of 8 non-progressor patients (less aggressive cancer) 
and 10 progressor patients (aggressive cancer). Samples consisted of transrectal biopsies 
obtained with 3-D ultrasound guidance, fixed in ethanol, cut into four micrometer sections 
and mounted on glass slides [11]. All prostate tissue samples were confirmed to be 
histologically normal by a histopathologist. 

2.8 Quantitative data analysis and statistical comparisons 

For each data set, the raw data was processed by normalizing by the incident illumination, 
applying a low-pass Butterworth filter to remove noise, and subtracting a low-order 
polynomial fit from each normalized and filtered spectrum. The first diagnostic parameter, Σ, 
was calculated over the full-spectrum (500-700nm, 1nm sampling) at each pixel in the 
measured image. The mean Σ was then calculated over a region of interest (ROI) for each 
sample. Differences between the case and control groups were tested using Student’s t-test 
and effect size was calculated as Cohen’s d. For comparison, Σλ and Σx,y were calculated using 
the same ROIs from each data set using the wavelengths corresponding to the sparse 15 
wavelength spectrum, allowing results to be compared for all markers using the same data. 

3. Results

3.1 System acquisition speed 

System speed was improved by an order of magnitude through the implementation of sparse 
spectra acquisition and the corresponding analysis algorithms as summarized in Table 1. 
Collection of 251 wavelengths (500-700nm) took 21.44 seconds and analysis of those 
wavelengths took 14 seconds for a total time of 35.44 seconds per field-of-view. In contrast, 
the new reduced wavelength approaches required only 0.38 seconds to collect 15 wavelengths 
and 0.81 seconds for analysis for a total time of 1.19 seconds per field-of-view. This 
improvement of more than an order of magnitude in total analysis time makes possible a new 
approach for PWS screening. Instead of a four-step process consisting of slide-mapping, cell 
selection, image cube acquisition, and data analysis, the entire process can be completed in a 
single step through a whole-slide PWS (WSPWS) measurement. Thus, entire sample 
specimens and all cells on a slide can be visualized and quantitatively analyzed with PWS 
microscopy in the same time it took to previously acquire data for ~30 cells. With this method 
a 20mm2 region on a slide can be measured and analyzed in less than 40 minutes. 

Table 1. PWS system performance sparse spectrum vs. full-spectrum analysis 

System 
Acquisition Time per 

Cell (1 FOV) 
Analysis Time per Cell 

(1 FOV) 
Total Time per cell (1 

FOV) 
PWS 

(full-spectrum) 
21.44s 14.00s 35.44s

WSPWS 
(sparse spectrum) 

0.38s 0.81s 1.19s

3.2 Theoretical validation results 

Numerically simulated wavelength-resolved microscope images generated using FDTD were 
analyzed according to the experimental analysis protocol. The ability of a well-established 
marker Σ to distinguish between samples with correlation lengths of 20 and 50nm was 
compared to that of the newly proposed markers. Figure 1(a) shows that all three parameters 
show effectively equivalent changes in magnitude over different correlation length scales 
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with slight variation in absolute value. All makers showed an increase of 65-66% from an lc 
of 20nm to 50nm. In addition, the correlation of the magnitude of the new markers to Σ was 
evaluated over a range of different correlation lengths in Fig. 1(b). Both new markers, Σλ and 
Σx,y, showed strong correlation to Σ in response to changes in correlation length (lc) with R2 
>0.99. Small differences in absolute magnitude were also observable as offsets from the 
perfect one-to-one correlation. 

Fig. 1. (a) Comparison of the nanoscale sensitivities of newly developed markers Σλ and Σx,y to 
that of Σ when measured from numerically simulated microscope images. All parameters show 
a 65-66% increase when the sample refractive index correlation length increased from lc = 
20nm to lc = 50nm. Uncertainty intervals correspond to the standard error between 20 samples 
created for each statistical condition. (b) Plot of the correlations of Σλ, and Σx,y, with the full-
spectrum marker Σ. Σλ, and Σx,y are determined using 15 wavelengths in the 500-700nm range, 
while Σ uses 1nm sampling in the same 500-700nm range. The values for the three parameters 
originate from simulations over a range of different refractive index correlation lengths 
between 20 and 50nm. 

3.3 Experimental validation 

For the HT29 cell line experiment, the mean values of each diagnostic parameter were 
calculated and compared. Figure 2 shows the mean Σ, Σx,y, and Σλ for the control group 
(smokers) and the lung cancer patients. The Σ was significantly higher for the lung cancer 
patients (p = 0.0026) with an effect size of 0.96. Similarly, Σλ was significantly higher for the 
lung cancer patients (p = 0.00024) with an effect size of 1.23. For Σx,y the p-value was 
0.00076 with an effect size of 1.12. Differences in the absolute values of mean Σ, Σx,y, and Σλ 
were observed within each of the experimental groups, which can likely be attributed to 
experimental variances including variations in focal plane selection, or temporal effects such 
as vibration in the sequentially acquired spectral data. 
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Fig. 2. The mean diagnostic parameter values for the full-spectrum analysis (Σ) and the 
reduced wavelength analyses (Σx,y and Σλ) for the HT29 cell line experiment. All parameters 
were significantly higher for the CV cells compared to the EGFR cells. For the Σ the p-value 
was 0.0026 and the effect size was 0.96. For Σx,y, the p-value was 0.00076 with an effect size 
of 1.12. For Σλ, the p-value was 0.00024 and the effect size was 1.23. 

For the lung cancer screening study, the mean diagnostic parameters were compared for 
the full-spectrum and the reduced wavelength methods. Figure 3 shows the mean diagnostic 
parameter values for both the full-spectrum analysis (Σ) as well as the reduced wavelength 
analysis Σx,y and Σλ for the lung cancer experiment. The Σ was significantly higher for lung 
cancer patients than for the smoking controls (p = 0.037) with an effect size of 0.89. The Σλ, 
was also significantly higher for the lung cancer patients than for the smoking controls (p = 
0.014) with an effect size of 1.02. The Σx,y was also significantly higher (p = 0.015) with an 
effect size of 1.00. 

Fig. 3. The mean diagnostic parameter values for the full-spectrum analysis (Σ) and the 
reduced wavelength analyses (Σx,y and Σλ) for the lung cancer diagnostics study. All parameters 
were significantly higher for the lung cancer patients compared to the smoker patients. For the 
Σ, the p-value was 0.037 and the effect size was 0.89. For Σx,y, the p-value was 0.015 and the 
effect size was 1.00. For Σλ, the p-value was 0.014 and the effect size was 1.02. 

Accurate assessment of the risk of progression in prostate cancer is critical for proper 
treatment of the disease and reducing the number of unnecessary surgeries performed on 
patients. Σ has been shown to be sensitive to stages of the prostate cancer progression, making 
PWS a unique tool for this application [11]. Figure 4 shows the mean diagnostic parameters 
for patients that progressed to an aggressive form of prostate cancer and the non-progressor 
patients that remained with a less aggressive form of the disease that could be managed 
without surgery. The Σ was higher for the progressor patients, (p = 0.082) with an effect size 
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of 1.19. The Σλ was higher for progressor patients than nonprogressors, (p = 0.060) with an 
effect size of 0.92. The Σx,y also was higher for progressors than nonprogressors with a p-
value of 0.085 and an effect size of 0.086. In a recent larger study using a slightly different 
full-spectrum analysis technique, PWS differentiated between progressors and nonprogressors 
with p = 0.002, sensitivity = 88% and specificity = 72% [11]. 

Fig. 4. The mean diagnostic parameter values for the full-spectrum analysis (Σ) and the 
reduced wavelength analyses (Σx,y, and Σλ) for the prostate cancer risk assessment experiment. 
All parameters were higher for the progressor patients than for the non-progressor patients. For 
the Σ, the p-value was 0.082 and the effect size was 0.84. For the Σx,y parameter the p-value 
was 0.085 and the effect size was 0.86. For the Σλ parameter the p-value was 0.060 and the 
effect size was 0.92. 

3.4 Proof-of-concept: whole-slide spectral nanocytology 

To demonstrate the concept of whole-slide spectral nanocytology, a whole-slide nanoscale 
sensitive biomarker image was generated for one of the prostate tissue biopsy sections used in 
section 3.3 for the experimental validation. To generate this image only the 15 wavelengths 
used for the reduced wavelength analysis were collected allowing the whole slide spectral 
data to be collected in a comparable amount of time to a ~30 cell full-spectrum data set. 
Figure 5 shows Epi-illumination bright field and Σλ images for the same prostate tissue 
section. Red regions in the Σλ nanocytology image correspond to regions of high nanoscale 
disorder (refractive index fluctuations) and blue regions correspond to regions of low 
nanoscale disorder as shown by the scale bar in Fig. 5. This approach has several advantages 
over the previously used full-spectrum data acquisition and analysis approach. In terms of 
acquisition, nearly the entire cell population on a slide can be measured in the same time it 
previously took to measure only 30 cells. This is advantageous because analysis can be 
performed on the entire representative sample population, decreasing diagnostic variability 
and increasing the statistical power of the diagnosis. In addition, it is now possible to examine 
the distribution of nanoscale changes associated with cancer throughout an entire sample, 
particularly with large, multicellular samples such as tissue sections. 
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Fig. 5. Proof-of-concept Whole-Slide nanocytology image of a histologically normal prostate 
tissue biopsy section. (a) Grayscale Epi-illumination whole-slide bright field image of the 
tissue section. (b) Crop of red highlighted region in (a). (c) Σλ biomarker whole-slide image of 
the same prostate tissue section. Red regions correspond to regions of high nanoscale disorder 
(refractive index fluctuations) within the sample and the blue regions correspond to regions of 
low nanoscale disorder. (d) Crop of the red highlighted region in (c). 

Other whole-slide microscopy techniques have been proposed for cancer screening 
applications via the field effect. Using DNA-specific staining, malignancy-associated changes 
have been detected and quantified as a biomarker for cancer screening using whole-slide 
microscopy [22]. This approach also was explored as a quantitative screening test for lung 
and breast cancer using the field effect [23]. The whole-slide PWS approach offers a label 
free alternative to these methods with nanoscale sensitivity to detect carcinogenesis in 
histologically normal-appearing samples. Because the PWS marker can be both label-free and 
quantitative it can be applied to multiple organ sites and tissue types without the need for the 
development of new staining protocols. In addition, it could be used in a multi-modal 
approach in conjunction with staining techniques in an attempt to improve the sensitivity and 
specificity of cancer screening for particular organs. 

4. Conclusion

A reduction in the number of wavelengths required to sense refractive index fluctuations from 
the spectrum of a reflected light microscope has been demonstrated. Newly developed 
markers which use 15 wavelengths in the visible spectrum are sufficient to achieve sensitivity 
to nanoscale structures. Application of these markers to cancer screening experiments shows 
that changes in cells associated with carcinogenesis can be detected. The reduction in the 
number of wavelengths collected and analyzed yields an order of magnitude improvement in 
the time to acquire each frame in a spectral data cube (x,y,λ), enabling an approach for whole-
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slide nanocytology. Whole-slide measurement can increase the statistical power of a 
diagnosis and will allow mapping of the nanoscale disorder in large samples such as tissue 
sections. 
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