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Fully sequencing the human genome has allowed unprec-
edented exploration of the roles that genes play in diseases, 
including neurological and autoimmune disorders, heart dis-

ease, and cancer. One of the most significant findings from the 
human genome project was the fact that, in many cases, these 
diseases do not depend on the behaviour of individual genes, 
but on the complex interplay between tens to thousands of genes 
over long periods of time1–3. Despite this emerging understand-
ing that many human diseases are thus inherently multifactorial 
and genomic in nature, no technologies have been developed that 
allow for the simultaneous, predictable engineering of multidi-
mensional transcriptional interactions.

In this regard, many studies have explored the mechanisms that 
control the transcription of genes, and have provided new under-
standing of the epigenetics that govern diseases. At the level of 
histones and nucleosomal organization (~10 nm), it is widely rec-
ognized that the physical structure of chromatin plays an important 
role in governing gene expression4,5. In a disease where particular 
genes or their mutational variants produce a hierarchal, central 
network topology, this information can be leveraged to control 
many genes simultaneously by targeting a key node (Fig. 1a). These 
insights have greatly expanded our knowledge of the basis of genetic 
diseases, but they face the limitation that genetic changes to tran-
scription factor binding sites, nucleosomal remodelling or specific 
gene compartments6,7 determine the activity of a few genes only; 
yet most genetic networks are inherently decentralized or diffuse 

(Fig.  1b). Therefore, methods to manipulate the expression pat-
terns of many genes simultaneously for non-hierarchical diseases, 
including most cancers and many diseases of ageing (Fig. 1c), are 
largely missing. To address this need, here we present a method to 
target supra-nucleosomal (> 10 nm) chromatin physical structure 
as a means to predictably modulate global patterns in gene tran-
scription. Starting from first-principle physical considerations and 
using a combination of Brownian dynamics and Monte Carlo sim-
ulations paired with systems modelling, we develop a model that 
explains the role of supra-nucleosomal chromatin organization on 
gene expression at the level of physiochemical interactions. Testing 
the predictions from this model with experimental results obtained 
from nanoscale measurements of chromatin structure using partial 
wave spectroscopic (PWS) microscopy—which measures nano-
scopic alterations in the scaling of chromatin packing density with 
a sensitivity to chromatin organization between 20 and 350 nm—in 
live cells and from measurements of gene expression using mRNA 
microarrays, we show that altering the packing-density scaling of 
chromatin produces predictable changes in gene expression, and 
that one of the main functional roles of the physical organization 
of chromatin is controlling the genomic information space as well 
as intercellular transcriptional heterogeneity. Accordingly, whereas 
existing understanding of transcriptional regulation has focused on 
means that regulate individual genes (modifying transcription fac-
tor binding domains, performing nucleosomal post-translational 
modifications, or localizing genes to chromatin compartments),  
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the approach introduced in this work modulates the physical struc-
ture of chromatin for global transcriptional modulation (Fig. 2a–d).

Owing to this role of physical structure of chromatin as a major 
regulator of the genomic information space through shaping the 
physiochemical nanoenvironment, we then apply the predictions 
in our model to overcome chemoevasion produced at the level of 
transcriptional heterogeneity8,9. One of the main challenges in can-
cer therapy is the innate ability of cells to adaptively sample their 
genome in order to develop mechanisms of chemotherapeutic eva-
sion10. To reverse this process, we employ our model to show that 
the use of agents that reduce intranuclear variations in chromatin 
packing density, termed chromatin protective therapies (CPTs), 
should reduce this transcriptional heterogeneity, and therefore that 
CPT agents would be effective adjuvant compounds to prevent the 
emergence of chemoresistance by limiting the replicative adapt-
ability of cancer cells8. Using live cell PWS microscopy11, we test 
this hypothesis on two potential adjuvants, celecoxib and digoxin, 
to see if they can act to reduce transcriptional heterogeneity and 
lead to significant amplification of cancer-cell lethality induced by 
chemotherapeutic agents. We validate this hypothesis in multiple 
models of aggressive gynaecological tumours and show that the 
level of chromatin modulation directly corresponds to the predicted  
in vitro efficacy.

Hence, we show that global patterns in gene transcription can be 
controlled by manipulating the physical nanoenvironment within 
the nucleus. Although we apply the functional consequence of such 
macrogenomic engineering to the screening of chemotherapeutic 
adjuvants, the approach paves the way for the study and treatment 
of diseases—such as Parkinson’s disease, atherosclerosis and auto-
immune disorders—that are governed by the complex interplay of 
dozens of genes.

Results
In chromatin, chemical reactions such as gene transcription take 
place in a highly dense and heterogeneous physical nanoenviron-
ment, the consequences of which are not yet fully understood. Here, 
we present and use a predictive model to leverage the effects of this 
physical nanoenvironment on gene transcription in order to con-
trol global patterns in gene expression. This model achieves this by 
considering that these chemical reactions depend on: (1) the acces-
sibility of the genome12, (2) the intrinsic molecular characteristics of 
the gene (binding affinities, local concentration of reactant species, 
and reaction rates, among others)13, and (3) the effects of physical 
interactions on these chemical reactions13–15. Notably, the supranu-
cleosomal physical organization of chromatin and the associated 
spatial fluctuations of concentration, and the overall accessibility of 
chromatin, have a role in determining the behaviour of these chemi-
cal reactions, as explored below.

To begin, we consider the elements that control the physi-
cal nanoenvironment within the eukaryotic nucleus and that 
influence many genes simultaneously. Chromatin (DNA and 
DNA-associated proteins, such as histones, polymerases and tran-
scription factors) is the predominant macromolecular assembly 
within the nucleus16. Thus, the nuclear physical nanoenviron-
ment with respect to multiple genes is shaped by the assembly of 
chromatin packed into supra-nucleosomal structures (> 10 nm) 
(Fig. 2a–d). Recent evidence suggests that chromatin polymer is 
a disordered chain that is packed together at different densities 
throughout the nucleus17. Independent of the exact configuration 
and of the kinetics of supranucleosomal folding, 3D chromatin 
packing density can be described statistically by the scaling of the 
mass of chromatin (M) contained within a sphere of radius r, M(r), 
and by the associated auto-correlation function (ACF) of chro-
matin packing density. The ACF is the quantitative relationship 
between smaller components (such as nucleotides and nucleo-
somes) and larger structures (up to chromosomal territories).  

Although the exact nature of chromatin organization is a topic of 
active debate, most of the recent evidence suggests that for supra-
nucleosomal length scales up to the Mbp range, chromatin can 
be characterized as a mass fractal (power-law scaling) media with 
a fractal dimension (scaling exponent) D < 3, a property which 
is commonly found in a variety of polymer systems18–27: ∝M r D 
and ∝ ∝ −rACF M r

V
Dd ( )

d
3, where V is volume28–30. It will be of con-

sequence to the discussion below that ACF also quantifies the 
intranuclear heterogeneity of chromatin packing density, and thus 
the scaling of chromatin packing density and packing-density het-
erogeneity are inherently linked. Experimentally, the power-law 
scaling of chromatin packing density was found using both ex vivo 
molecular techniques such as neutron scattering and chromatin 
conformation capture (3C, 5C and Hi-C)31–33 as well as in vitro by 
nanoscale-sensitive imaging techniques such as transmission elec-
tron microscopy (TEM), PWS microscopy, fluorescence correla-
tion spectroscopy and photon localization microscopy (PLM)34–37.

By using this evidence, and without loss of generality, we con-
sider the mass and ACF of chromatin structure to follow a power-
law scaling form with fractal dimension, D. To extend this work to 
non-fractal conditions, one should note that D is proportional to 
the molecular correlation distance regardless of the exact form of 
the correlation function (for example, when D >  3)38–40. In cases with 
a non-fractal ACF, D instead statistically quantifies the fraction of 
large versus small length-scale structures in chromatin (a larger D 
implies a greater fraction of larger length scales)39,41, and the physi-
cal properties of chromatin (including the accessible surface area 
and the local variations in density, which are two critical quantities 
that play a major role in global transcriptional regulation) can still 
be quantified using the ACF. Consequently, in the context of this 
work, the scaling of chromatin packing density refers to the poly-
meric properties of chromatin as it relates to the scaling dimension 
(or scaling exponent), D, of its mass, as a function of distance from 
a reference point. Clearly, multiple chromatin conformations may 
potentially correspond to the same scaling dimension. However, as 
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Fig. 1 | Genomic networks are highly interconnected and decentralized. 
a, Classically, the role of critical genes, such as MYC, BRCA1 and YAP, has 
been viewed in the context of a hub-spoke model, in which these genes 
form the critical link between the elements in the system. b, However, 
evidence has shown that the full mapping of the interactions that occur 
for all genes within a given interaction network shows a diffuse plurality 
of connections and broad network redundancy. c, Mathematically, 
the divergence in these models can be represented by the number of 
connections each gene shares. In the classical hub-spoke system, most 
genes are anchored only by the central elements (such as BRCA1, MYC and 
YAP). In most genetic networks, however, this is a major oversimplification. 
Indeed, most genes share direct interactions with at least five other genes 
within the network, necessitating a strategy to target the overall regulators 
of gene transcription. In c, note that when grey and red bars overlap, the bar 
appears dark red.
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it occurs with other polymers, modifying the scaling dimension will 
produce critical differences in both the accessibility of chromatin 
regions and the distribution of chromatin packing density.

To understand the link between chromatin packing-density scal-
ing and transcription, we consider the average mRNA transcription 
rate, E, for any given group of genes (n >  1) as the product of the 
expectation of the fraction of chromatin that corresponds to the 
accessible surface (ASA) and the average rate of transcription of 
genes associated with the accessible chromatin surface, ̄ϵ ,

ϕ= ⋅ ϵE mASA ( , ) (1)

where ϕϵ m( , ) is the expression rate of any given gene within the 
group as a function of its molecular features, m, for a given local 
molecular crowding density, ϕ. m accounts for molecular regula-
tors such as the local concentration of transcription factors, their 
binding affinities, and the transcription rate of RNA polymer-
ases, which in turn depend on histone regulation, genome com-
partmentalization (such as gene positioning with respect to A/B 
domains and transcription factors)22,42, and other molecular regu-
latory processes.

We first consider the influence that packing-density scaling has 
on the accessible surface area of chromatin. In a fractal medium, the 
relation between ASA and D is analytically quantified following the 
law of dimensional coadditivity as:

=
− ∕









M

M
ASA (2)f

D

min

1

where Mmin is the mass of the basic unit of the chromatin chain (a 
single nucleotide) and Mf is the total mass of the chromatin domain 
within which the power-law scaling holds with the number of base 
pairs M

M
f

min
. Therefore, in a power-law medium such as chromatin, 

increases in D directly elevate ASA, and without other consider-
ations, would elevate transcription overall. In principle, D can vary 
throughout the nucleus and, as a result, ASA could vary from gene 
to gene. However, global increases or decreases in packing-density 
scaling would be expected to change the accessibility of genes on 
average. It is important to note that these conclusions also apply to 
a medium with a non-fractal ACF, as an increase in the correlation 
distance (higher D) would increase the ASA (see Supplementary 
equations (10)–(14) for details).
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Fig. 2 | Genomic interactions depend on a complex physical nanoenvironment. a, One universally shared feature of all genes is the physical 
nanoenvironment that is determined by the supranucleosomal (> 10 nm) packing density of chromatin within the nucleus. b, While previous work has 
shown that localizing genes into or out of compartments will influence their expression, both genes within compartments (genes A–C) and outside 
of compartments (genes X–Z) will respond to the physical forces produced by their differential packing density. c, As a consequence, while genes are 
regulated by distinct molecular characteristics (transcription factor binding affinity, compartment concentrations of factors or nucleosomal modifications) 
that predispose them to a preferred expression state (overexpressed, intermediate or underexpressed), the transcription of these genes into mRNA will 
also depend on local physical forces. Thus, regardless of the determinant of expression, overexpressed genes (A and X) will differentially respond to  
local physical organization produced by chromatin packing when compared to intermediately expressed (B and Y) or underexpressed (C and Z) genes. 
To integrate these effects, we consider the power-law scaling of chromatin packing density through fractal dimension, D. Increased D produces increased 
variations in chromatin packing density whereas decreased D does the opposite. d, Ultimately, the physical geometry of chromatin (scaling) determines 
accessible surface area as well as local crowding conditions that will influence the chemical reactions governing transcription by altering gene accessibility, 
molecular mobility of reactant species, and the free energy of the transcriptional reactions. Pol-II, RNA polymerase II; TF, transcription factor; TSS, 
transcription start site.
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In addition to altering ASA, changes in D also have an effect on ϵ 
through the heterogeneity of chromatin packing density. Changes 
in the local mass density (that is, changes in crowding) will non-
monotonically alter expression depending on the molecular fea-
tures of a given gene. This complexity and molecular dependence 
is rooted in the competition between the effect of local crowding 
on molecular diffusion and the stability of binding reactions13. As 
crowding increases from dilute conditions, the initial effect on 
chemical reactions is a gain in stabilization of the intermediary 
complexes, as the entire system gains entropy by decreasing the 
excluded volume of the reactant species. As the volume fraction 
continues to increase, the gain in entropy is eventually overcome 
by the decreased mobility that results from crowding. This pro-
duces a non-monotonic relationship between the local density 
and the rate of transcription that disproportionately influences 
underexpressed genes (Fig. 3a). To quantify this relationship as a 
function of various molecular features for a homogenous media, 
we used Brownian dynamics and Monte Carlo simulations13. 
However, chromatin is an inherently heterogeneous environment, 
and therefore predicting the effects of changes in density requires 
information on the distribution of mass density. To estimate  

these changes, we analytically calculated the local variations  
in crowding as a function of D on the basis of the properties of a 
polymeric assembly. Of note, the effects of the spatial distribution 
of mass density on gene expression are applicable both to genes 
localized within and outside of higher-order compartments, as 
crowding has a generalized effect on chemical reactions (Fig. 2b,c). 
Therefore, although compartmentalization has itself been shown 
to control individual genes by modulating the distribution of cis 
regulatory factors, in the context of the transcriptional modula-
tion by chromatin packing density, the compartmentalization 
effects will be similar to those of genomic or histone modifica-
tions: they alter the underlying molecular predisposition of indi-
vidual genes for gene expression, which is further modulated by 
the local chromatin packing density.

With respect to chemical reactions, it is reasonable to assume 
that the physical environment within a small ‘interaction volume’ of 
radius Lin neighbouring any given gene is homogenous with a local 
crowding density ϕ (Fig. 2c,d). Furthermore, outside of this interac-
tion volume, crowding conditions have no effect on transcription 
reactions of the given gene, as crowding density has a negligible 
influence on the free energy of reactions13. Therefore, the effect of 
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Fig. 3 | Control of higher-order chromatin packing density scaling allows manipulation of genomic information space. a, Local macromolecular  
crowding density (ϕ) non-monotonically regulates gene expression. The rate of expression ( ϕ ̄m( , )) relative to that of the average crowding that  
would be observed in the absence of chromatin packing-density heterogeneity ( ϕ ̄m( , ) with ϕ ̄ =  40%) is a non-monotonic function of ϕ and also 
depends on ϕ ̄m( , ). In turn, ϕ ̄m( , ) is determined by molecular factors mm including transcription-factor concentrations, binding affinities and the rate of 
transcription, among others. Expression of suppressed genes is 0.01-fold of the average, and that of enhanced genes is 10-fold the average. b, The result  
of this non-monotonic relationship between macromolecular crowding and gene expression is an anisotropic response of the rate of expression to changes 
in crowding ( ϕϕ

ϕ

∂

∂
̄mm  ( , )( , )2

2 ) as a function of the rate of expression ϕ ̄m( , ), where ̄  is the average rate of expression. c, Differential PWS microscopy 
of the variations in chromatin packing density and RNA microarray experiment to measure the relation between changes in chromatin packing-density 
scaling and transformation of global gene expression using stimulation with serum (SE), epidermal growth factor (EGF), or phorbal 12-myristate- 
13-acetate (PMA). Scale bars, 15 μ m. Pseudo-colour: heterogeneity of chromatin packing density (Σ). Arrows: cell nuclei. d, Comparison of the analytical 
macrogenomic model predicting the changes in gene expression in response to changes in chromatin packing-density scaling (fractal dimension) D  
(blue curve; gene expression sensitivity (Se), see equation (5)), with experimental microarray results (purple markers) obtained from c. Each experimental 
data point represents the average of 100 genes. E

_
 is the average expression of all genes. Error bars are the standard errors of the gene expression 

sensitivity (Se) calculated based on the microarray data in each subgroup. e, The accuracy of the macrogenomic model (equation (5)) increases as a 
function of the number of genes in each group. For gene groups with more than 50 genes, over 90% of the variance of gene expression is explained by 
the predicted effect of the chromatin packing-density scaling. f,g, A major functional role of the regulation of chromatin packing-density scaling is the 
modulation of the genomic information. Increases in the variations in chromatin packing density are directly linked to increased intercellular transcriptional 
heterogeneity (f) and transcriptional divergence (g). f, Comparison of the analytical macrogenomic model predicting intercellular transcriptional 
heterogeneity (H) as a function of D (blue curve; equation (6)) with experimental microarray results (purple markers). Error bars represent the standard 
errors of the heterogeneity of 1,000 genes for each condition. Genes were selected such that their expression was within 1 standard deviation of gene 
expression of the mean expression for all conditions. g, Processes where transcriptional divergence occurs include but are not limited to: (1) metabolic 
regulators, (2) proliferation, (3) apoptosis and (4) developmental regulation.
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D on transcriptional reactions is mediated by the variations in mass 
density (ϕ) throughout the nucleus. Analytically, the variance of 
local density within the nucleus, σϕ

2
in

, can be derived as a function of 
packing-density scaling, D, and is calculated as:

̄ ̄σ ϕ ϕ= − ∕ϕ
−r L(1 )( ) (3)D2

min in
3

in

where rmin is the size of the unit element (here a single base pair of 
DNA) and ̄ϕ  is the average of ϕ across the entire nucleus. As D 
increases, so too do the local variations in density. As the location of 
genes within a group (for example, genes with similar molecular fea-
tures) can vary throughout the nucleus, the ensemble expression is 
given by the expectation of gene expression as a function of the local 
crowding conditions. Therefore ̄ϵ  can be approximated by:

̄ ̄
̄

̄ ϕ σ
ϕ

ϕ
ϕϵ ≈ ϵ +

∂ϵ
∂

ϵϕ
ϕ












m

m
m( , ) 1 1

2
( , )

( , ) (4)2
2

2in

where ̄ϕϵ m( , ) is the rate of gene expression that would be observed in 
the absence of chromatin packing-density heterogeneity. Using equa-
tion (4), the effect of D on ̄ϵ  is analytically computed as a function of 
the local crowding conditions with ̄ϕϵ m( , ) obtained from the simula-
tions (Fig. 3a). Since ̄ϕϵ( ) is non-monotonic and, for the range of ̄ϕ  
typically found in cell nuclei (~30–45%), ̄ϕϵ( ) is close to its maximum,  

̄
<ϕ

ϕ ϕ

∂ϵ
∂

0m( , )2

2 . Therefore, an increase in D reduces ϵ, as genes become 

exposed to a wider range of local crowding conditions for which ϵ is 
not at its maximum. As Fig. 3b illustrates, this effect depends on ϵ m( ): 
the absolute value of ̄

̄
ϕϵϕ

ϕ ϕ

∂ϵ
∂

m( , )
m( , )2

2  decreases as a function of the 

rate of ̄ϕϵ m( , ) (Supplementary equation (19)). This is because highly 
expressed genes are already optimized by molecular modifications 
(such as histone interactions or gene positioning within chromatin 
domains) and crowding has a lesser effect on the stabilization of their 
intermediary complexes. Therefore, the net result of an increase in D is 
greater suppression of initially underexpressed genes in comparison to 
overexpressed genes. Integrated with the overall upregulation of gene 
expression probabilities due to an increase in ASA as a function of D, 
the resulting behaviour of increases in D on transcription would be 
asymmetric and monotonic.

What is practically significant is to predict how gene expression 
for a given functional group of genes that share a common charac-
teristic (such as similar initial expression, length, or other attributes) 
changes in response to a change in chromatin packing-density scal-
ing as quantified by D. To characterize this relationship, we define 
the relative change of gene expression as a function of the change 
in D (‘gene expression sensitivity’), = ∂ ∕∂E DSe ln( ) ln( ). Combining 
equations (1)–(4), this can be directly quantified as:

̄
= −
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Here, L is the sequence length of the gene, and function g is used as a 
change of variables to transform ̄ϕϵ m( , ) into a function of ̄ϵ , and can 
be computed either numerically from simulations or analytically as: 

σ

ϵ =

+ + +κ
ϕ

σ κϵ
ϵ

ϕ




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


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8
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where κ =  22.6 nM s−1 is the critical expression such that for κϵ <  
crowding has a significant effect. Because κ exceeds the physi-
ological range of the rate of transcription, crowding is expected 
to have a significant effect on gene transcription (Supplementary 
equations (15)–(20)).

To validate this model, we tested these predictions against 
experimental data. Cells were exposed to multiple perturba-
tions, including stimulation with serum, epidermal growth fac-
tor (EGF) and phorbol 12-myristate 13-acetate (PMA) (Fig. 3c). 
The changes in the scaling of chromatin packing density due to 
a perturbation were assessed using PWS microscopy on live cells 
while the consequential changes in gene transcription were evalu-
ated using microarray mRNA sequencing. Here, PWS microscopy 
was used to quantify the nanoscale (20–350 nm) heterogeneity of 
chromatin packing density averaged throughout the nucleus. This 
range of structural length scales corresponds to genomic distances 
from the Kbp to the Mbp range. The produced signal, ∑, is a result 
of the heterogeneity of the spatial variations in chromatin den-
sity within each diffraction-limited voxel, and is proportional to 
D: Σ ∝ (D – D0), where D0 ≈  1.5043. As shown by equation (5), the 
influence of the change in the packing-density scaling of chroma-
tin on gene expression depends on: (1) the average initial (that is, 
preceding the perturbation) expression rate ̄ϵ  determined by m,  
(2) the initial D, (3) the upper length-scale of packing-density 
scaling of chromatin ( M

M
f

min
), (4) gene length L, and (5) the size  

of the interaction volume (see Supplementary Section 1 for the 
derivation). These parameters were obtained experimentally and 
from the simulations: initial gene expression and D for each con-
dition were obtained by microarray and PWS microscopy mea-
surements respectively11,44, 

M

M
f

min
 was assumed to correspond to 

the average size of a single chromosome, L was calculated as the 
average gene length for genes in the microarray data set, and the 
radius of the interaction volume was determined from the deple-
tion distance between DNA and transcription factors from simu-
lations (Supplementary equation (7))13,45.

Critically, the theoretical prediction of the model strongly 
matches the experimentally observed changes in expression 
(Fig.  3d). Thus, the combined effect of increases in D on tran-
scription is to warp the genomic landscape towards a state where 
overexpressed genes are further upregulated and underexpressed 
genes are suppressed, which can be referred as transcriptional 
divergence. Furthermore, over 90% of the change in gene expres-
sion is captured by the model as the number of genes per group 
increases (> 50 genes), indicating that the scaling of chromatin 
packing density plays the predominant role in the collective 
response of tens to hundreds of genes (Fig. 3e). In relation to the 
diffuse network hierarchy that is present for most genes, this pro-
vides a key feature of macrogenomic engineering via the modu-
lation of the physical structure of chromatin because it allows 
predictable regulation of gene expression for multiple genes 
simultaneously. As uncovered by the model, although individual 
genes still retain the capacity to respond to specific stimuli, the 
collective global behaviour of genes is dominated by alterations 
to the physical nanoenvironment.

To leverage the predictive capabilities of our model on the expres-
sion patterns of hundreds of genes, we next explored if controlling 
chromatin packing-density scaling could be used to modulate the 
available genomic information space. In brief, this genomic infor-
mation space is the cumulative functional capacities present within 
an individual cell (intra-network heterogeneity or transcriptional 
divergence) or a population of cells (intercellular transcriptional 
heterogeneity). Analytically, our model shows that the variations 
in chromatin packing density determine intercellular transcrip-
tional heterogeneity, H, which is defined as the standard deviation 
of the transcription rate of the same gene across a cell population  
(see Supplementary Section 1.3 for more detail):
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Because ASA and σϕ
2

in
 increase monotonically with D (equations (2)  

and (3)), H also increases with D. The relative intercellular het-
erogeneity between two cell populations with different chro-
matin packing-density scaling properties, D1 and D2, is therefore 

≈
− + − +( ) ( )H D

H D

M

M
r
L

D D( )
( )

f D D2

1 min

1
2

1
1 min

in

2 1 (Supplementary equation  (26)). 

This indicates that chromatin packing-density scaling is directly 
coupled to intercellular transcriptional heterogeneity and to the 
divergence in gene expression for critical processes, including 
metabolic regulation, proliferation, apoptosis, and differentia-
tion, which is in agreement with the microarray data (Fig.  3f,g). 
Finally, the coefficient of variation of intercellular transcriptional 

heterogeneity ̄≈ −
ϵ( )CV 2 1E g D
1

( )s,  also increases with D, where ϵs

is the average rate of expression for the same gene across multiple 
cells (Supplementary equations (27), (28) and Supplementary Fig. 5). 
In summary, elevation of D augments both intracellular transcrip-
tional divergence and intercellular transcriptional heterogeneity.

In this context, carcinogenesis may present a test bed for mac-
rogenomic regulation. Indeed, increased chromatin packing-den-
sity fluctuations are a near-universal hallmark of early oncogenesis. 
The model described above would suggest that chromatin packing-
density heterogeneity could facilitate tumorigenesis by expanding 
the genomic information space available to neoplastic cells to sta-
bilize otherwise deleterious states46–56. By extension, this principle 
would also be expected to apply to the cellular response to cytotoxic 
chemotherapeutic stress, because increasing intra-network and 
intercellular transcriptional heterogeneity for functional processes 
(such as stress response, proliferation, and cell-cycle maintenance) 
would allow cells to stochastically develop chemotherapeutic resis-
tance in real time8.

In brief, cytotoxic stressors can be overcome by numerous 
means and can depend on the capacity of cells to sample their 
genome to acclimate to the stressful environmental conditions. 
Since apoptotic and non-apoptotic decisions occur over a con-
comitant but separated timescale that spans several hours57, 
decreasing the accessible genomic information space is expected 
to shift behaviour toward the initial stress-response activity, that 
is, apoptosis. Conversely, rapidly increasing the information space 
provides a means for cells to arrive at one of a number of successful 
evasive mechanisms. Experimentally, intercellular transcriptional 
heterogeneity has so far been observed as a critical determinant 
of chemoevasion without a clear mechanistic basis58. However, as 
demonstrated by our model, increased scaling of chromatin pack-
ing density and the resulting density fluctuations can produce the 
observed transcriptional heterogeneity. In principle, this allows 
for a direct application of macrogenomic engineering to develop 
adjuvant agents as CPTs that would decrease the scaling of chro-
matin packing density, and would enhance the efficacy of cyto-
toxic chemotherapy by limiting information sampling encoded in 
the genome and reducing the fitness of cells during their response 
to cytotoxic chemotherapy.

To explore this hypothesis and the applicability of macroge-
nomic engineering for selecting CPT adjuvant agents, we tested 
if cytotoxic chemotherapeutic intervention did indeed produce 
increased chromatin fluctuations coupled to an expanded genomic 
information space (that is, increased intra-network and intercel-
lular heterogeneity). In particular, we tested the effect of cytotoxic 
treatment on chromatin organization and transcriptional hetero-
geneity in five cell-line models of three gynaecological tumours 
by using a wide range of compounds: microtubule depolymeriza-
tion inhibitors (paclitaxel or docetaxel), DNA intercalating agents  

̄

ϕ
ϕ

σ≈
∂ϵ

∂
ϕ

ϕH D
m

( ) 1
2

ASA
( , )

(6)
2

2
2

in

(oxaliplatin), and nucleoside analogues (5-fluoruracil or gem-
citabine). The three tumours were chosen based on their clinical 
aggressiveness: uterine leiomyosarcoma (MES-SA and mitoxan-
trone resistant MES-SA.MX2), ovarian carcinoma (A2780 and 
TP53 mutant clone A2780.M248), and triple-negative breast cancer 
(MDA-MB-231). As expected, cytotoxic intervention increases the 
heterogeneity of chromatin density Σ—and thus D—within 48 hours, 
independent of the cell-line model or of the mechanism of the che-
motherapeutic agent (Fig. 4a–d and Supplementary Figs. 1 and 2).

By taking advantage of the fact that chromatin D is indeed pre-
dictably and directly coupled to the chemotherapeutic response, 
we explored whether CPT compounds that can rapidly (< 30 min) 
reduce chromatin packing-density fluctuations would act as adju-
vant agents for chemotherapeutic efficacy. This short time point 
was chosen to avoid potential confounding from protein trans-
lation on chromatin structure. To test the macrogenomic engi-
neering CPT approach, we selected two compounds that act on 
biological processes that were transformed by paclitaxel treat-
ment: celecoxib (stress response) and digoxin (ion homeostasis). 
Using live cell PWS microscopy, we measured the transforma-
tion in chromatin-scaling within 30 minutes for A2780, A2780.
M248 (M248), MES-SA and MES-SA.MX2 (MX2) cells treated 
with either digoxin or celecoxib. We focused on uterine leiomyo-
sarcoma and ovarian carcinoma, as we had both a resistant and a 
sensitive subclone for each model. Notably, the response of each 
cell type to these compounds varied, but a substantive response 
was identifiable (Fig.  5a–d). In view of the differential response 
between CPT and chemotherapeutic agents at the level of varia-
tions in chromatin packing-density scaling, we next tested if these 
observations would extend into transcriptional heterogeneity.

Critically, analysis of single-cell RNA-seq data of MDA-MB-231 
cells treated with paclitaxel in comparison to control cells10 shows 
the expected shift towards increased intercellular transcriptional 
heterogeneity, as well as towards intra-network transcriptional 
heterogeneity, owing to chemotherapeutic intervention. The shift 
affects numerous biological processes, as it includes genes involved 
in proliferation, apoptosis, oxidation/reduction, ion transport, 
and nucleosome assembly (Fig.  6a–c). Furthermore, analysis of 
RNA-seq data of digoxin-treated cells shows that decreases in 
the chromatin packing-density fluctuations through CPT agents 
likewise correlated with decreases in intercellular and intra-net-
work transcriptional heterogeneity (Fig.  6a–c). This differential 
response between chemotherapeutic agents (taxols) increasing 
D and CPT agents (digoxin) decreasing D (Fig.  6a) paired with 
the expected changes to gene expression (Fig. 6b,c) supports our 
finding that controlling chromatin packing-density scaling can be 
used to modulate the genomic information space. By extension, 
we hypothesize that if the genomic information space is critical 
for chemotherapeutic evasion, we would observe that differential 
changes in chromatin packing-density scaling would extend to the 
adjuvant efficacy in vitro.

We found that this is indeed the case. Under normal growth con-
ditions, untreated ovarian A2780 cells rapidly grew into colonies 
and covered over 90% of the imaging field (Fig. 7a). As expected, 
48 hour mono-treatment with IC50 concentration of paclitaxel 
resulted in cellular coverage of ~50% of the imaging field over the 
same growth period as the controls (Fig. 7b). Combination treat-
ment of paclitaxel with a CPT agent (celecoxib) greatly enhanced 
the efficacy of chemotherapeutic intervention, with clearance 
approaching 100% (Fig. 7c), even though CPT agents on their own 
did not induce apoptosis (Supplementary Fig.  3). Furthermore, 
this effect extends across all the investigated cell lines, show-
ing an increased efficacy even in models with intrinsic resistance 
such as the M248 and MX2 models (Fig.  7d). These effects were 
model- and adjuvant-independent, with the effective clearance 
centering on the total modification to chromatin packing-density 
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scaling. Importantly, the magnitude of the decrease in chromatin 
packing-density heterogeneity by the CPT agents as measured by 
PWS microscopy strongly correlates with their increased efficacy to 
induce cancer-cell death when administered in combination with 
the chemotherapeutic compounds (Fig. 7e), resulting in highly lin-
ear behaviour that directly matches the level of decrease in chro-
matin packing-density scaling with the level of cellular inhibition 
(R2 >  0.99, Fig. 7e).

Discussion
Supra-nucleosomal chromatin can have profound effects on gene 
expression by acting on accessibility, mobility and the binding 
affinities between reactant molecules. Previous investigations 
of the interaction between molecular behaviour and physical 
organization have focused on the regulators of local compac-
tion/decompaction in the context of the expression of individual 
genes4,5. Whereas previous work has demonstrated the role of 
genetic modifications, histone post-translational modifications 
and genomic compartments in the regulation of the expression 
of individual genes, the role of the physical environment within 
the nucleus on the broad regulation of gene expression has not 
been previously explored. Here, we have described a physio-
chemical framework that maps the collective behaviour of mul-
tiple genes simultaneously on the basis of chromatin’s physical 
nanoenvironment (Fig. 2a–d). These capabilities are derived from 
experimental evidence indicating that chromatin is the domi-
nant crowder within the nucleus. In this context, modulating the 

packing-density scaling of chromatin (D) is one mechanism to 
shape the nuclear physical nanoenvironment and alter global pat-
terns in gene expression. In particular, we have demonstrated that  
macrogenomic engineering can control the transcriptional activity 
of many genes simultaneously and can be applied to the selection 
of adjuvant compounds to increase the efficacy of chemotherapeu-
tic agents in vitro. Physiochemical modulation of the chromatin 
nanoenvironment influences patterns in gene expression owing to 
the sensitivity of genes to changes in the local physical conditions.

Although previous work investigating supra-nucleosomal orga-
nization has shown that gene expression depends on gene localiza-
tion into a compartment or outside of it, we have shown that both 
genes within compartments and those outside of them respond 
to the physical forces produced by the physical nanoenvironment 
(Fig.  2b,c). We integrated Brownian dynamics and Monte Carlo 
simulations of the chemical reactions governing transcription with 
analytical predictions of the change in global accessible surface area 
and of the variations in local density of chromatin packing. The 
combined model allows the analytical prediction of transcriptional 
consequences of changes in the power-law scaling of chromatin 
packing density. Although we consider chromatin as a power-law 
media because of recent experimental evidence, our predictions 
can be extended for any known auto-correlation function describ-
ing the structural relationship between smaller and larger structures 
within the nucleus. Even in non-fractal conditions, both the ASA 
and variations in density monotonically increase as a function of 
D (Supplementary Fig. 4). Critically, the results from the model are 
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Fig. 4 | Chemotherapeutic stress increases variations in chromatin packing density. a, Representative PWS microscopy images of cell nuclei before 
and 72 (5-FU) or 48 (paclitaxel and oxaliplatin) hours after their exposure to cytotoxic chemotherapy for A2780 and MDA-MB-231 (M231) cells. Scale 
bars, 15 μ m. Pseudo-colour: heterogeneity of chromatin packing density (Σ). Arrows: cell nuclei. b–d, Treatment of ovarian A2780 cells (P =  2.5 ×  10−4, 
1.9 ×  10−7 and 2.8 ×  10−28) (b), uterine leiomyosarcoma MES-SA cells (P =  2.1 ×  10−6 and 1.1 ×  10−19) (c), and triple-negative breast cancer MDA-MB-231 
cells (P =  2.5 ×  10−2, 1.6 ×  10−4 and 3.9 ×  10−5) (d) with cytotoxic chemotherapeutic agents (5-FU, paclitaxel and oxaliplatin) produces an increase in the 
intranuclear chromatin packing-density heterogeneity (Σ), independent of the mechanism of cytotoxic action. Significance was determined using Student’s 
t-test with unpaired, unequal variance on the average nuclear Σ normalized by the average Σ of the accompanying control group between the conditions. 
Box represents the 25–75% range of values and whisker represents the 10–90% range around the mean for N =  823 control, 145 5-FU, 132 paclitaxel 
and 101 oxaliplatin A2780 cells; N =  836 control, 102 docetaxel and 69 gemcitabine MES-SA cells; and N =  264 control, 81 5-FU, 36 paclitaxel and 59 
oxaliplatin MDA-MB-231 cells (***P <  0.001, *P <  0.05).
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in strong agreement with experimental results obtained through a 
combination of microarray measurements of gene expression and 
of live-cell PWS microscopy of the cell’s physical structure. The 
model appears to be best equipped to explain collective patterns 
in gene expression, and ultimately becomes the dominant predic-
tor of expression patterns for larger groups of genes (> 50; Fig. 3e). 
At the level of transcription, the observed collective behaviour is 
anisotropic and monotonic, with highly expressed genes benefiting 
from increased variations in chromatin packing density and under-
expressed genes responding conversely.

A major functional consequence of this asymmetric response is 
the transformation of the genomic information space, as the level 
of intercellular transcriptional heterogeneity (Fig.  3f), genomic 
divergence (Fig.  3d,g) and intra-network transcriptional heteroge-
neity (Fig. 3g) relate directly to chromatin packing-density scaling 
(Fig.  3c,f). As this intercellular transcriptional heterogeneity is a 
major factor in chemotherapeutic resistance, we predicted that: (1) 

cytotoxic chemotherapeutic intervention would produce increased 
variations in chromatin packing density, and (2) agents could be 
predictably selected as adjuvants based on their capacity to reverse 
this effect. As predicted, treatment with cytotoxic chemotherapeu-
tic compounds selected for cells with increased chromatin packing-
density heterogeneity independent of the cell line model (ovarian, 
breast and sarcoma) and of the mechanism of the chemotherapeutic 
agent (DNA intercalators, microtubule assembly inhibitors and DNA 
analogues). Furthermore, the transformation of chromatin towards 
increased packing-density fluctuations corresponded with increased 
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have a differential response to CPT agents celecoxib (P =  3.9 ×  10−34, 
1.5 ×  10−53, 1.5 ×  10−30 and 1.3 ×  10−3 for MES-SA, MX2, A2780 and M248 
cells, respectively) and digoxin (P =  2.7 ×  10−8, 7.6 ×  10−69, 3.1 ×  10−36 and 
6.2 ×  10−9 for MES-SA, MX2, A2780 and M248 cells, respectively). 
Significance was determined using Student’s t-test with unpaired, unequal 
variance on the average nuclear Σ normalized by the average Σ of the 
accompanying control group between the conditions. Box represents the 
25–75% range and whisker represents the 10–90% range of values around 
the mean for N =  836 control, 275 celecoxib and 342 digoxin MES-SA cells; 
N =  558 control, 216 celecoxib and 252 digoxin MX2 cells; N =  823 control, 
132 celecoxib and 130 digoxin A2780 cells; and N =  525 control,  
36 celecoxib and 91 digoxin M248 cells (***P <  0.001, *P <  0.05).  
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Fig. 6 | Regulation of chromatin packing-density scaling modulates 
transcriptional heterogeneity. a, Comparison of the alterations in 
the variations of chromatin packing density due to taxol treatment 
(paclitaxel or docetaxel) in contrast to CPT agent digoxin for five 
cell line models (A2780, M248, MDA-MB-231, MES-SA and MX2). 
Notably, chemotherapeutic intervention produces increased variations 
in chromatin packing density whereas a CPT agent (digoxin) decreases 
variations in chromatin packing density. Box represents the 25–75% range 
and whisker represents the 10–90% range of values around the mean  
for N =  401 taxol-treated cells (132 A2780, 25 M248, 102 MES-SA, 106 
MX2 and 36 MDA-MB-231 cells) and N =  815 digoxin-treated cells  
(130 A2780, 91 M248, 342 MES-SA and 252 MX2 cells). b,c, As 
expected, intercellular (b) and intra-network (c) transcriptional 
heterogeneity increases in cells treated with the chemotherapy agent 
and decreases in cells treated with the CPT agent for critical biological 
processes, including: (1) cell cycle, (2) apoptosis, (3) proliferation, 
(4) transcription, (5) signalling, (6) differentiation, (7) glycolysis, 
(8) translation, (9) ion transport, (10) metabolism, (11) oxidation/
reduction, (12) stress response and (13) nucleosome assembly. Circle 
size represents the number of each genes belonging to a functional 
network/process and thickness the number of shared genes. Colour 
intensity represents the percentage change in transcriptional 
heterogeneity in paclitaxel-treated versus controls and in digoxin-
treated cells versus controls (see the sections 'RNA-Seq transcriptional 
analysis', 'Intranetwork transcriptional heterogeneity' and 'Intercellular 
transcriptional heterogeneity' in the Methods for calculations).

NATURE BIOMEDICAL ENGINEERING | www.nature.com/natbiomedeng

http://www.nature.com/natbiomedeng


© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ArticlesNature Biomedical eNgiNeeriNg

intra-network and intercellular transcriptional heterogeneity as dem-
onstrated by single-cell RNA sequencing. As these findings are in 
strong agreement with our model predictions, we therefore hypothe-
sized that compounds that could reverse this process (decrease chro-
matin packing-density heterogeneity) at short time-scales (< 30 min) 
would increase the efficacy of existing chemotherapies.

We tested this hypothesis by examining the effects of two com-
pounds that act on processes that demonstrated increased inter-
cellular and intra-network transcriptional heterogeneity during 
paclitaxel treatment: stress response (celecoxib) and ion homeosta-
sis (digoxin). Both of these compounds have some anti-neoplastic 
inhibitory effects; however, our results suggest that they also modu-
late chromatin packing density (Fig. 5). Indeed, we observed that 
the efficacy of these agents as adjuvants depends in large part on 
their capability to modulate chromatin packing-density heterogene-
ity (Fig. 7d,e). For example, the ovarian carcinoma cells, A2780 and 
M248, had a robust decrease in the intranuclear variations in chro-
matin packing density for both digoxin and celecoxib, and showed a 
marked enhancement in clearance for both adjuvants. Critically, the 
adjuvant efficacy is directly linked (R2 >  0.99) to the effect on chro-
matin, with the level of decrease in the variations of chromatin pack-
ing density linearly matching cellular death. Although these results 
are strongly in agreement with the model, it is impossible to rule 
out the presence of secondary mechanisms that could produce the 
observed adjuvant efficacy. However, the robust agreement between 
the observed changes in gene expression and the predictions of our 

model (Fig. 3), the effect of chemotherapeutics on transcriptional 
and chromatin packing-density heterogeneity (Fig.  4), the effects 
of CPT agents on decreasing both transcriptional and chromatin 
packing-density heterogeneities (Figs. 5 and 6), and a robust agree-
ment between the ability of CPT agents to reduce chromatin pack-
ing-density heterogeneity and the synergistic lethality imparted by 
these agents when administered in combination with cytotoxic che-
motherapy (Fig. 7) support the overall potential of macrogenomic 
engineering for modulating chromatin packing density.

Outlook
We have shown that macrogenomic engineering can predictably 
modulate global patterns in gene expression by controlling the 
physiochemical environment within the cell’s nucleus. Whole-
transcriptome manipulation based on the control of the physiochem-
ical nanoenvironment of chromatin should be widely applicable to 
address many illnesses, including cancer, inflammatory disorders 
and autoimmune diseases. Macrogenomic engineering could com-
plement gene-editing techniques: whereas the latter work at the level 
of the linear genetic code and thus target individual genes, the regu-
lation of chromatin packing density affects global patterns of gene 
expression. Pairing gene editing and macrogenomic engineering 
may allow for the hitherto unachieved capacity to control the over-
all behaviour of biological systems. The joint application of genomic 
editing and macrogenomic engineering could significantly enhance 
existing capabilities to regulate biological behaviour in complex 
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systems where global transcriptional reprogramming takes place, 
including pathologies related to atherosclerosis, neurodegeneration, 
wound repair, oncology and inflammation. Whereas genome-editing 
tools would supply the capacity to create new proteomic states, mac-
rogenomic engineering is inherently reversible and can thus support 
the intrinsic capabilities of an organism by increasing or decreasing 
the access to such states.

Methods
Cell culture. Leiomyosarcoma (MES-SA and MES-SA.MX2) and breast (MDA-
MB-231) cell lines were purchased from ATCC. Ovarian (A2780 and A2780.M248) 
cell lines were a gift from C.-P. Huang Yang and obtained from the lab of E. de Vries 
at Albert Einstein College of Medicine. MES-SA cells were cultured in McCoy’s 5a 
Modified Medium (ThermoFisher Scientific, Waltham, MA, no. 16600108), MES-
SA.MX2 cells were cultured in 1:1 Waymouth’s MB 752/1 Medium (ThermoFisher 
Scientific, Waltham, MA, no. 11220035) and McCoy’s 5a Modified Medium, 
MDA-MB-231 cells were cultured in DMEM (ThermoFisher Scientific, Waltham, 
MA, no.11965118), and A2780 and A2780.M248 cells were cultured in RPMI-
1640 Medium (ThermoFisher Scientific, Waltham, MA, no. 11875127). All culture 
media was supplemented with 10% FBS (ThermoFisher Scientific, Waltham, MA, 
no. 16000044).

All chemotherapeutic agents and potential chromatin protective therapy (CPT) 
agents were purchased from Sigma Aldrich, St. Louis, Mo.: paclitaxel (T7191, 
Sigma), oxaliplatin (O9512, Sigma), 5-fluorouracil (F6627, Sigma), gemcitabine 
(G6423, Sigma), docetaxel (01885, Sigma), celecoxib (PZ0008, Sigma) and 
digoxin (D6003, Sigma). All compounds were dissolved in anhydrous DMSO 
(ThermoFisher Scientific, Waltham, MA, no. D12345).

Before imaging, cells were cultured in 35 mm glass bottom petri dishes 
(Cellvis, Mountain View, CA) until 60–85% confluent. All cells were given at 
least 24 hours to re-adhere prior to pharmacological treatment. CPT-treated 
cells were given at least 24 hours to adhere after trypsinization and treated for 
30 minutes prior to imaging with either celecoxib (75 µ M) or digoxin (100 nM). 
Chemotherapy treated cells were treated for at least 48 hours prior to imaging  
with paclitaxel (48 h, 5 nM unless otherwise specified), oxaliplatin (48 h, 15 µ m),  
5-fluorouracil (72 h, 500 nM), docetaxel (48 h, 5 nM), or gemcitabine (48 h, 50 nM). 
Each population of treated cells measured by partial wave spectroscopic (PWS) 
microscopy was compared to a control-treated population of the same cell type 
that had been plated on the same day with the same seeding density as the treated 
cells. All cells were maintained and imaged at physiological conditions  
(5% CO2 and 37 °C) for the duration of the experiment. All cell lines were 
tested for mycoplasma contamination with Hoechst 33342 within the past year. 
Experiments were performed on cells from passage 5–20.

Partial wave spectroscopic (PWS) microscopy and in vitro treatments. Imaging 
was performed on commercial inverted microscope (Leica DMIRB) using a 
Hamamatsu Image-EM CCD camera C9100-13 coupled to a liquid crystal tunable 
filter (LCTF; CRi Woburn, MA) to acquire mono-chromatic spectrally resolved 
images that range from 500–700 nm at 1 nm intervals produced by a broad band 
illumination provided by an Xcite-120 LED Lamp (Excelitas, Waltham, MA). 
These spectrally resolved images were normalized by the incident light reflection 
produced from the glass-media interface by taking an independent reference from 
a field of view without cells. A low-pass Butterworth filter was applied to reduce 
spectral noise prior to the calculation of Σ at each pixel. Σ was calculated as per 
equations and algorithms described in detail in ref. 11.

Significance was determined using Student’s t-test with unpaired, 
unequal variance on the average nuclear Σ normalized by the average Σ of the 
accompanying control group between the conditions indicated in the experiment 
using Microsoft Excel (Microsoft, Redmond, Washington). Significance threshold 
for all comparisons was set to 0.05/N to account for multiple comparisons with 
the respective control groups, where n is the number of groups. For example, 
significance for chemotherapy treated A2780 cells was 0.05/3 as comparisons 
were made between control cells and 5FU, paclitaxel, and oxaliplatin-treated 
cells. All PWS measurements were performed at least in triplicate and resulted 
in the analysis of the following number of cells: A2780 cells: 823 control, 132 
paclitaxel-, 145 5-FU-, 101 oxaliplatin-, 132 celecoxib- and 130 digoxin-treated; 
A2780.M248 cells: 525 control, 45 paclitaxel-, 100 5-FU-, 85 oxaliplatin-, 36 
celecoxib- and 91 digoxin-treated; MES-SA cells: 836 control, 102 docetaxel-, 69 
gemcitabine-, 275 celecoxib- and 342 digoxin-treated; MES-SA.MX2 cells: 558 
control, 106 docetaxel-, 103 gemcitabine-, 216 celecoxib- and 252 digoxin-treated; 
MDA-MB-231 cells: 264 control, 36 paclitaxel-, 81 5-FU- and 59 oxaliplatin-
treated. In total, nanoscale measurements were collected from 5,644 cells.

Each individual experiment consists of 5–10 independent fields of view for 
analysis with variations in the size and density of cells accounting for the variability 
in total cell counts for each group. All PWS microscopy measurements were 
performed at least in triplicate. All pseudo-coloured live cell PWS images were 
produced using Matlab v. 2015b using the Jet colour scheme with Σ scaled from 
0.01 to 0.065.

Central values displayed in all applicable figures represent the mean with 
error bars that represent the standard error of measurements. The number of 
cells analysed was estimated to achieve a 95% confidence level given the expected 
difference between the treatment group and the controls. Experiments were 
blinded when assessing the outcome of the treatment to the cells during PWS 
microscopy. Each cell population followed an approximately normal distribution 
with an average standard deviation that was 15 ±  2% of the mean.

Flow cytometry. Apoptotic induction was measured by flow cytometry  
(BD LSRII at the Northwestern Flow Cytometry Core) using CellEvent Caspase-3/7 
Green Detection Reagent and Hoechst 33342 (all ThermoFisher Scientific, 
Waltham, MA). In brief, cells were trypsinized and immediately stained with 2 µ M 
Caspase-3/7 and 4 µ M Hoechst 33342 for 30 min. Cells were then centrifuged for 
5 minutes at 500g, washed with PBS, and resuspended in 1 ml of fresh media.  
Mock-stained cells were collected under the same preparation conditions.  
Flow cytometry was performed on the following groups of A2780 cells: unstained 
controls cells, stained control cells, stained 48 hour celecoxib-treated cells and 
stained 48 hour digoxin-treated cells. 20,000 cells were collected by forward 
and side scattering channels for each group, with illumination intensities set for 
all conditions for Hoechst 33342 and Cas3/7 staining laser lines to minimize 
autofluorescence produced from unstained cells. Analysis of flow cytometry was 
performed using open source Python software package, FlowCytometeryTools 
0.4.5. Gates were set for Cas3/7 staining and Hoechst 33342 to minimize false 
positives from unstained cells (< 0.1% of total). Percentage of apoptotic cells  
was assessed as the ratio of Cas3/7 +  cells divided by the population of Hoechst 
33342 positive cells. Error bars represent uncertainty based on ± 10% change in  
gating thresholds.

Viability analysis. Relative elimination between two CPT compounds for a 
particular cell line model was calculated based on the relative population clearance 
adjusted for the efficacy of monotherapy. To quantify the relative elimination of 
the cells in response to chemotherapeutic agents alone or in combination with 
potential CPT agents, we measured the cell plate density using transmission 
microscopy of the dish for an area spanning between 600,000 to 2,500,000 µ m2. 
These measurements were obtained using either a 40×  or 20×  air objective prior 
to the acquisition of PWS microscopy measurements of the population for three 
independent petri dishes for each condition group. The added elimination efficacy 
due to the co-treatment with CPT compound k and chemotherapy drug α  relative 
to the elimination produced by the chemotherapy drug alone (Iα) was calculated 
as ln((1 −  Iα)/(1 −  Iαk)), where Iαk is the co-treatment efficacy. Relative CPT-added 
elimination ('relative elimination' in Fig. 7e) between two CPT compounds (k and n)  
was calculated as ln((1 −  Iα)/(1 −  Iαk))/ln((1 −  Iα)/(1 −  Iαn)).

Relative modification of chromatin packing-density heterogeneity between 
two CPT compounds k and n ('chromatin modification' in Fig. 7e was calculated 
as Σ Σ Σ Σ = ⋅ ∕ ⋅ − ∕ ⋅ ∕ ⋅ −S S S SChromatin modification (( ) ( ) 1) (( ) ( ) 1)c c k k c c n n , where 
Σc  and Σk are the average intranuclear chromatin heterogeneities for cells before 
and 30 min after the application of compound k, respectively, and Sc and Sk are the 
corresponding cell population entropy values. Entropy was calculated from each 
cell population cohort. Σ values for each cell were rounded to the nearest first 
decimal place prior to calculation. The Shannon entropy, S, was calculated as  
S =  − Σipi ×  ln(pi), where pi is the probability of a cell of a given Σ value occurring 
within the population and Σi is the summation sign. The measured entropy was: 
MES-SA controls, 1.76; MES-SA celecoxib, 1.86; MES-SA digoxin, 1.707; MX2 
controls, 1.758; MX2 celecoxib, 1.677; MX2 digoxin, 1.908; A2780 controls, 
1.728; A2780 celecoxib, 1.604; A2780 digoxin, 1.428; M248 controls, 1.92; M248 
celecoxib, 1.577; and M248 digoxin, 1.75.

Microarray transcriptional analysis. Cells were serum starved for 5 hours prior 
to being treated with 10% FBS (SE), 100ng/ml epidermal growth factor (EGF), or 
100 ng ml−1 phorbol 12-myristate 13-acetate (PMA). Live-cell PWS microscopy 
measurements were performed on HT-29 cells grown on 5 mm glass bottom petri 
dishes (Cell Vis) and serum starved for 5 hours before and after stimulation59. 
Changes in gene expression for each treatment group were measured using 
Illumina human HG12-T microarray chips of mRNA collected by TRIzol isolation 
(Life Technologies, Carlsbad California) from 10 mL petri dishes. Quality check 
and the probe level processing of the Illumina microarray data were further 
made with R Bioconductor package, lumi by the Northwestern Genomics Core60. 
Analysis of network heterogeneity was performed on 2445 differentially expressed 
genes using Mathematica v10.

For gene network analysis, a total of 471 genes were selected based on their 
ontology groups (Cell Cycle, Proliferation, Apoptosis, Transcription, Signal 
Transduction or Cell Differentiation) using inbuilt GenomeData, matching the 
annotated genes with these processes. Transcriptional heterogeneity for each 
process was measured by analysing the relative gene expression for each gene 
in reference to the expression of the serum starved cells. Relative differences 
in chromatin packing-density heterogeneity were measured 30 minutes after 
a stimulation (SE, EGF or PMA) was applied using PWS microscopy on the 
same cells before and after the stimulation. The difference between the two 
measured values of Σ (∆ Σ) was obtained from over 50 cells per condition and 
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was observed to be on average: 0.1% for SE cells, 0.77% for EGF cells and 8.49% 
for PMA cells.

RNA-seq transcriptional analysis. RNA sequencing data obtained from NCBI 
GEO from data produced previously10 for MDA-MB-231 cells treated with 
paclitaxel, as well as for androgen-resistant LNCap cells treated with diogxin61, 
were aligned to human reference genome hg38 using HISAT2, STRINGTIE, 
and BALLGOWN using the methods described previously62. Sequencing results 
for each gene were calculated as fragments per kilobase pair per million reads 
(FPKM). Variants for the same gene were averaged for each cell. Genes with no 
expression for all cells were not considered in downstream analysis. GO ontologies 
available from Mathematica v.10 using inbuilt GenomeData were used to classify 
genes according to the biological process in which they are involved.

Intra-network transcriptional heterogeneity. FPKM values for each condition were 
averaged across the five individual replicates for paclitaxel-treated cells and three 
replicates for digoxin-treated cells which were rounded to the nearest tenth of a 
decimal. To approximate the change in the genomic information space at the level of 
intra-network transcriptional heterogeneity, the entropy, S =  − Σkpkln(pk), where pk is 
the probability of an observed expression value, was calculated for genes belonging 
to the listed biological processes. Size of each circle represents the relative number of 
genes belonging to each process and thickness of connecting lines indicates number 
of shared genes for each data set (paclitaxel versus digoxin). Colour intensity 
represents the percentage change in entropy for the paclitaxel or digoxin-treated 
cells in comparison to the untreated controls for each respective group

Intercellular transcriptional heterogeneity. FPKM values for each cell were 
rounded to the nearest tenth of a decimal as described above. To approximate the 
change in the genomic information space at the level of intercellular transcriptional 
heterogeneity, the variance in expression for each gene was calculated across the 5 
replicates of paclitaxel-treated cells and the three replicates of the digoxin-treated 
cells. For each process, the median variance was calculated in order to account for 
the presence of large outliers that could skew the mean. Size of each circle represents 
the relative number of genes belonging to each process and thickness of connecting 
lines indicates number of shared genes. Colour intensity represents the percentage 
change in median variance for the paclitaxel or digoxin-treated cells in comparison 
to the untreated controls for each respective group.

In addition, the variance in expression was examined for individual oncogenic 
genes and chromatin remodelling genes, showing an increased in intercellular 
transcriptional heterogeneity due to paclitaxel treatment for MYC, KLF4, p21, 
NOTCH2, p53, BRCA1, BAX, BAK1, MXD1, EZH2, Arid1a, Brg1, SUZ12, 
SUV39H1, BRD8, JARID2, JMJD1C, NuA4 complex (EP400, RUVBL2, MORF4L1, 
YEATS4), SMYD3, L3MBTL2, RNF20, NCOR1 and GSK3b.

Life Sciences Reporting Summary. Further information on experimental design 
and reagents is available in the Life Sciences Reporting Summary.

Code availability. Code for generating the output for the Monte Carlo and 
Brownian dynamics simulations and for the predicted and experimental results of 
the chromatin packing macromolecular crowding (CPMC) model can be found at 
GitHub: https://github.com/BiophotonicsNU/macrogenomics.

Data availability. The authors declare that all data supporting the findings of 
this study are available within the paper and its Supplementary Information. 
Source data for the figures are available from the authors upon request. RNA-seq 
data are available from the NCBI GEO database from ref. 10, accession number 
SRP040309, and from ref. 61, accession number GSE35126. Microarray source data 
for Fig. 3 and Supplementary Fig. 5 have been provided in Supplementary Table 1. 
Normalized Σ values for Figs. 4 and 5 as well as Supplementary Figs. 1 and 2 have 
been provided in Supplementary Table 2.
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