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1. Introduction

Atomic force microscopy (AFM) is a tech-
nique that allows visualizing surfaces down
to the nanoscale. Beyond pure microscopy,
AFM can be used to measure the mechani-
cal properties of samples, in particular, bio-
logical cells.[1,2] Further development of
AFM modes has shown that the AFM tech-
nique can also be used to obtain informa-
tion about the pericellular layer, a layer of
molecules grafted to the pericellular mem-
brane surrounding cells.[3-5] All this wealth
of information can be used to address
important medical questions, for example,
the problems of cancer detection. There is a
host of works reporting the differences in
the mechanical properties of cancer and
normal cells,[6,7] cancer cells of different
metastatic activity,[4,5,8] and even cancer-
initiating cells.[9] It was also found that can-
cer cells of different aggressiveness have a

substantially different pericellular coat, a layer of molecules
grafted to the pericellular membrane surrounding cells.[3-5]

The challenge of using these properties to identify the cell
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A novel method based on atomic force microscopy (AFM) working in Ringing
mode (RM) to distinguish between two similar human colon epithelial cancer cell
lines that exhibit different degrees of neoplastic aggressiveness is reported on.
The classification accuracy in identifying the cell line based on the images of a
single cell can be as high as 94% (the area under the receiver operating char-
acteristic [ROC] curve is 0.99). Comparing the accuracy using the RM and the
regular imaging channels, it is seen that the RM channels are responsible for the
high accuracy. The cells are also studied with a traditional AFM indentation
method, which gives information about cell mechanics and the pericellular coat.
Although a statistically significant difference between the two cell lines is also
seen in the indentation method, it provides the accuracy of identifying the cell line
at the single-cell level less than 68% (the area under the ROC curve is 0.73). Thus,
AFM cell imaging is substantially more accurate in identifying the cell phenotype
than the traditional AFM indentation method. All the obtained cell data are
collected on fixed cells and analyzed using machine learning methods. The
biophysical reasons for the observed classification are discussed.
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phenotype lies in the difficulty of controlling cell physical prop-
erties during sample preparation. It was shown, for example, that
the elastic modulus and pericellular coat of cells can change dur-
ing sample preparation substantially more than the difference
between cancer and normal cells.[10] Furthermore, the accuracy
of detection based on mechanical properties typically requires to
analyze a substantial number of cells, which is time-consuming
when using AFM. In addition, living cells are considered to be
biohazard, which may complicate their handling in a diagnostic
lab environment.

To overcome the aforementioned problems, it was suggested
to use fixed cells.[11,12] A special method of fixation was developed
to protect the fine structure of the cell surface.[12,13] The approach
was demonstrated on the example of human cervical epithelial
cells.[11,12,14] It was shown that the AFM imaging of fixed cells
is capable of detecting all stages of progression toward cancer.
Interestingly, it was possible to do this by using a single surface
parameter, fractal dimension (and later, multifractality), which
was calculated using the maps of adhesion.[12,14,15] However,
the use of a single parameter had a serious limitation. While
it was possible to segregate each cancer and normal cells unam-
biguously, it was impossible to find such a precise separation
between precancerous and cancerous cells. Moreover, a recent
study using exfoliated bladder cells extracted from urine has
shown that single surface parameters do not work for separations
of cells obtained from patients with and without active bladder
cancer.[16] The problem was successfully addressed through the
use of machine learning analysis, which allows taking into con-
sideration multiple surface parameters, which are typically used
in engineering to describe sample surface (e.g., roughness, see
previous studies[11,12,14,16] for more details). It was shown that the
AFM imaging of the adhesion maps of cells extracted from urine
could be used to detect active bladder cancer with an accuracy of
94% (when using five cells per patient to make the diagnosis).

In the current work, we apply machine learning to test the
hypothesis that AFM imaging of fixed cells can be used to differ-
entiate cancer cells of different neoplastic behavior. This problem
is significant because at present there is no accepted method to
identify the degree of malignancy at the level of single cells.
Solving this problem will help doctors to prescribe the efficient
treatment early, thereby decreasing the mortality of cancer.[17-19]

Here, we presented the study of two similar but genetically
altered human colon cancer cell lines, HT29 cells, and Csk
cells.[20,21] The latter are shRNA-transfected HT29 cells that
exhibit different degrees of neoplastic aggressiveness. It is a
more proliferative phenotype compared with HT29 cells.
Here, we study cells using both AFM methods, the traditional
study of cell mechanics (including the pericellular coat) and
the AFM imaging of the cell surface. The data contained in
AFM images were then reduced to a set of surface parameters
mentioned earlier. The obtained information was further proc-
essed by means of a machine learning algorithm.

In addition to the previous AFM imaging, here we utilized a
recently introduced multidimensional AFM modality, Ringing
mode (RM),[22-24] which allows recording the images of the dis-
tribution of several physical properties of the sample surface.
Specifically, together with the standard height and adhesion
channels, we recorded three additional imaging channels, RM
restored adhesion, RM adhesion, and RM viscoelastic adhesion.

These five channels simultaneously recorded provide multidi-
mensional images of the cell surface. We consider each chan-
nel/dimension separately for cell classification. It allows us to
understand the power of each channel in the identification of
the cell phenotype. In addition, we also combined all channels
to enhance the segregation power of the method.

In the current work, we demonstrate that the regular approach
of studying cell mechanics can also differentiate between the
average values of these two cell lines. These differences were
found in all three physical parameters extracted from the
AFM indentation of cells (the Young's modulus, equilibrium
length of the pericellular coat, and the effective grafting density
of the pericellular coat molecules). However, these three param-
eters are not capable of differentiating each cell with sufficiently
high accuracy. When combining all three physical parameters,
the accuracy of identification of the cell line is only 68% (the area
under the receiver operating characteristic curve [AUC ROC] is
0.73). In contrast, the machine learning algorithm working with
the surface parameters is capable of differentiating individual
HT29 and Csk cells with an accuracy of up to 94% (the AUC
ROC is 0.99). We further calculate the full statistical character-
istics of the obtained cell classification and demonstrate that
the obtained results are robust.

To the best of our knowledge, the obtained accuracy is better
than the accuracy of a single-cell DNA sequencing (which is not
exceeding 80%[25]) and close to single-cell RNA sequencing
methods (accuracy�96%[26-28]). It is definitely premature to com-
pare the well-established single RNA and DNA sequencing with
the results of this study. Nevertheless, we hope that our work
shows the potential and will spark the interest of the research
community to a broader investigation and utilization of the
described method.

Because of the novelty of the described methods, we devote
several next sections to the description of the method of AFM
imaging, the data processing of AFM indentation of cells, and
machine learning analysis of the obtained data. The results of
the measurements and data processing are presented in
Section 4. The traditional parts of the used methods are pre-
sented in the Experimental Section at the end.

2. AFM in Studying Cells

2.1. AFM Imaging of Cells in RM

RM is a relatively new imaging modality, which allows to obtain
maps of physical properties of sample surfaces with higher res-
olution and speed compared with the more traditional subreso-
nance tapping.[22-24] It is based on advanced processing of the
dynamic response of the cantilever (ringing) after disconnecting
the AFM probe from the sample surface. RM used in this work
was implemented as an expansion of PeakForce tapping, which
is a subresonance imaging mode. In the previous work,[16] the
maps of adhesion of PeakForce tapping were used to identify
cells extracted from urine of patients with active bladder cancer.
(The adhesion stands for the pull off force between the AFM can-
tilever and cell surface.) Therefore, here we collect the adhesion
images of cells as well as traditional height images when AFM
working in the PeakForce tapping.
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In addition to these two imaging channels, we record three
RM channels: RM adhesion, RM restored adhesion, and RM vis-
coelastic adhesion. The difference between adhesion and RM
adhesion is due to the difference in processing the AFM signal.
The signal used for calculation of the RM adhesion was just min-
imally filtered to keep the value of the adhesion force unchanged
(compared with the adhesion measured independently by the
force-volume mode[29]). When applied to fixed cells, the resolu-
tion of this method is of the order of 1 nm.[16] The meaning of the
RM restored adhesion is explained in detail in previous stud-
ies.[22,23] Briefly, it is the force of adhesion between the AFM
probe and cell surface at the moment of disconnection with
the last part of the cell (e.g., molecules of the glycocalyx, which
are pulled off by the action of the AFM probe while disconnect-
ing). RM viscoelastic adhesion is essential in the difference
between RM adhesion and RM restored adhesion. It is used here
because of two reasons: 1) it has a definite physical sense (the
force difference needed to stretch the surface molecules from
the cell surface by the action of the AFM probe during detach-
ment from the cell surface), and 2) it is in instructive to verify if a
simple linear combination of two channels would result in a bet-
ter classification of cell phenotype; see Section 5 for detail.

To summarize, five imaging channels were recorded in this
study: the height, adhesion (both channels are native of
PeakForce QNM), and three novel RM channels: RM adhesion,
RM restored adhesion, and RM viscoelastic adhesion. It is
worth noting that all these imaging channels are recorded
simultaneously.

2.2. AFM Method of Indentation of Cells; the Brush Model

The brush model is used to obtain information about mechan-
ical properties of cell body and its pericellular coat (brush).[30]

To avoid collapsing of the brush layer, the measurements have
to be done in aqueous environment. AFM indentation method
is a traditional way to study the difference between various can-
cer cell lines. In this mode, the AFM probe is ramping up and
down, measuring the force response of the probe that indents a
cell. For precise measurements, it is important to know the
geometry of the cell under the indenting probe. It is done with
the help of force-volume mode.[29] To find the mechanical prop-
erties of cells, the elastic modulus, and the properties of its peri-
cellular coat, we used the AFM method called the brush model.
This model was suggested in the study by Sokolov et al.,[30] and
later developed in previous studies.[9,31,32] As was shown, con-
sidering the pericellular layer and the use of a large colloidal
probe are essential for self-consistency of the Hertz model,
which is used to extract the effective Young's modulus of
the cell body (note that the Hertz model is used because there
is no adhesion between the AFM probe and cell surface mea-
sured in liquids). This model is described in detail in the refer-
ences mentioned earlier and recently overviewed.[31] Briefly, a
geometry of a spherical AFM probe deforming a cell body,
which is covered with molecules of the pericellular coat, is
shown in Figure 1. A geometrical reasoning provides the fol-
lowing relation between the geometrical parameters defined
in the figure:

h ¼ Z � Z0 þ

2
64 9
16

k
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rprobe þ Rcell

RprobeRcell

s 3
75
2=3

d2=3 þ d (1)

where Z0 is the position of the undeformed cell body, h is the
distance between the AFM probe and the surface of the cell
body, E is the elastic (Young's) modulus, k is the spring con-
stant of the AFM cantilever, and Rprobe (Rcell) are the radius
of the AFM probe (cell) The Poisson ratio of a cell is chosen
to be 0.5 (because of a small range of possible variations of
v, the error in the modulus due to the uncertainty of its defini-
tion is small, within 5%[2]).

The experimental data are fitted with Equation (1) in two steps.
In step 1, the indentation part corresponding to a relatively high
force is considered (typically >3–5 nN for the case of epithelial
cells). It is assumed that the soft pericellular layer is almost
entirely squeezed at those forces, and consequently, h¼ 0 in
Equation (1). This allows to use Equation (1) to extract the effec-
tive Young's modulus of the cell body. The assumption of
squeezed pericellular layer is verified by independence of the
Young's modulus on the indentation depth. This is, however,
true only for a limited range of forces; for higher forces, the cell
body cannot longer be treated as a homogeneous and isotropic
material, as well as the substrate effect might be needed to be
taken into account.

In step 2, Equation (1) is used to extract the force due to the
pericellular layer. This is done by using the indentation data for
forces smaller than the one needed to squeeze the brush layer.
This pericellular brush layer can be characterized with two
parameters: N is the surface density of the brush constituents
(grafting density, or effective molecular density) and L is the
equilibrium thickness of the brush layer. It can be found using
the following equation (Alexander–de Gennes model), which is
used for the force of repulsion between a spherical probe of
radius Rprobe and a semispherical cell of radius Rcell

[33-35]

FðhÞ � 100kBTR�N3=2 exp
�
�2π

h
L

�
L (2)

where kB is the Boltzmann constant, T is the temperature, and
R� ¼ Rprobe � Rcell=ðRprobe þ RcellÞ.

Figure 1. A schematic of AFM cantilever deforming the cell body covered
with a molecular pericellular coat.
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In this work, the AFM indentation measurements will be
reduced to three parameters: the effective Young's modulus
(E), equilibrium size of the pericellular coat (L), and the grafting
density of the pericellular brush (N).

3. Data Processing Using Machine Learning
Methods

In the described method, AFM images of cells are classified
using the machine learning method, as shown in Figure 2.
Five different AFM images were collected simultaneously for
each cell. As AFM is a relatively slow technique, it is unrealistic
to collect a large number of cell images. According to “the rule of
ten,”[36] the number of instances used for regression in machine
learning methods should be at least ten times larger than the
number of features used for the regression or classification. It
means that the number of different cell images should be at least
ten times larger than the number of features used for quantifi-
cation of each image. If we used information of the entire image,
512� 512 pixels, it would be totally unrealistic to obtain such a
large number of AFM images. Although the rule of ten is not a
rigid rule but rather a recommendation, it is paramount to
reduce the dimension of the data space a substantially lower
number of features.

To reduce the dimension of data space, we follow[16] and use
the so-called surface parameters as features to characterize each
AFM image. The surface parameters are routinely used in mul-
tiple engineering applications to characterize surfaces, including
cell surfaces.[11,12,14,16] A complete list of parameters used in this
work can be found in standards ISO 4287/1 ASME B46.1; ISO/
DIS 25178-2. The surface parameters can be calculated by using a
number of available software. For example, SPIP (by Image
Metrology A/S, Denmark) can be used to calculate all surface
parameters for 3D image surface arrays recorded by AFM. We
used a home-built Python code to calculate these parameters
and subsequently modify them by normalizing each of the
parameters by the surface area (to the appropriate power) to
make the surface parameters independent of the area of the
images. This is important, as explained in the next paragraph.
A good number of the parameters is already surface indepen-
dent. Only the following parameters were modified to make
them surface independent: S3a, Std, Stdi,Srw, Srwi, Shw, Scl, and

Str. Several parameters did not carry relevant information
(e.g., the image area, S2a). As a result, each channel was effec-
tively characterized with 35 surface parameters (the list of the
surface parameters and examples of formulas used to calculate
the parameters are given in the Supporting Information).

To calculate the surface parameters, each 10� 10 μm2 cell
image was split typically in four equal zoomed images of
5� 5 μm2. Because of the specifics of the sample, it is impractical
to prepare cell samples without any contamination on its surface.
In principle, these artifacts could be identified automatically.
But in the current work, we identify artifacts visually. Several
examples of the artifacts in the cell images are shown in
the Supporting Information (Figure S1–S3, Supporting
Information; one can see abnormal horizontal lines in the
images which are characteristic of the artifacts). The images with
artifacts were not used for further processing. In some cases, it
was difficult to find a 5� 5 μm2 area without artifacts. In such
cases, we used a higher zoom to a smaller area. Therefore, it
is important to use the modified surface parameters, which
are surface independent, as described earlier.

The values of each pixel of the AFM images were used as is
with the exception of the height image. This exception is because
the absolute value of height in the AFM image does not carry any
useful physical meaning. Second, we assume that the overall tilt
of the cell surface does not carry any useful information either.
Thus, each height image was preprocessed by removing a plane
fitted using the least square method. This option is available in
almost any AFM processing software (we used the SPIP
software).

For the purpose of cell classification, we treated each AFM
imaging channel independently. We also considered four chan-
nels combined to enhance the classification by making a plausi-
ble assumption that the combination of channels carries more
information than each channel separately. The combination of
four channels included all five channels with the exception of
the adhesion channel. The adhesion channel presented too many
artifacts, and consequently, keeping this channel in combination
with others would substantially reduce the number of cells which
can be considered for the subsequent analysis.

In the next step, we further reduced the number of the used
surface parameters by using the Gini index ranking of the param-
eters features by their power in cell classification.[37] By taking a

Figure 2. A schematic of data processing used in this work.
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limited number of the highest ranked parameters, it is possible
not only to accelerate calculations but also to increase the accu-
racy of classification. This is a rather typical situation because the
lower ranking parameters bring essentially just noise, thereby
interfering with the regression of the classifiers. In this work,
we used 10 highest ranked parameters for each individual chan-
nel and 20 for the combined channels. More justification for the
choice of these numbers will be given later.

The Gaussian process classifier was used as a classifier of
choice. The reason was as follows. A simple prescreening of
the behavior of the surface parameters demonstrates some clus-
tering (see Figure S4, Supporting Information). One can see that
clusters penetrate inside of each other. We assume Bayesian sta-
tistics for this penetration (the posterior probabilities). Therefore,
it seems to be a typical case to apply the Gaussian process clas-
sifier, a nonparametric algorithm.[38] Specifically, we used the
algorithms implemented in Sklearn library. The RBF kernel
and Laplace approximation were used to obtain a binary classifi-
cation in this algorithm.[39] The maximum number of iterations
was chosen to be 500.

The cell indentation data are processed in a similar way.
Instead of 35 surface parameters, each cell is characterized with
three parameters: the effective Young's modulus, equilibrium
size of the pericellular coat, and the grafting density of the
pericellular brush. Five to seven indentation force curves are

analyzed per cell. The cell is assigned the values of the aforemen-
tioned three parameters. The statistical significance was found
using ANOVA one-side test.

The statistical analysis of the classification was obtained as fol-
lows. We analyze the ROC curve and the confusion matrix (accu-
racy, specificity, and sensitivity). The ROC curve allows defining
a range of sensitivity and specificity of the classification,
which are defined as follows: sensitivity¼ TP/(TPþ FN);
specificity¼ TN/(TNþ FP), where the components of the confu-
sion matrix TP, TN, FP, and FN are true positive, true negative,
false positive, and false negative, respectively. We also can calcu-
late accuracy¼ (TNþ TP)/(TPþ FNþ TNþ FP). Sensitivity and
specificity for a ROC point that corresponds to the minimum
error of classification of both cell types while keeping the differ-
ence between sensitivity and specificity small. To find the afore-
mentioned statistical characteristics, the entire database was split
into testing and verification subsets at a predefined proportion.
The testing subset was used to train the classifier, and the verifi-
cation subset was used to derive all statistical parameters. This
split is done randomly 1000 times. As a result, one obtains 1000
realizations of the statistical parameters. The mean values were
calculated. To demonstrate the robustness of classification, we
present the statistical distributions of the AUC ROC.

Finally, it is paramount to validate the absence of overtraining,
which is a weak point of machine learning methods. To validate

Figure 3. Representative images of cells. a,a 0) 350� 350 μm2 optical (bright-field) images of cells. b–f, b 0–f 0 ) AFM images of both types of cells:
b,b 0) height, c,c 0) adhesion, d,d 0) RM adhesion, e,e 0) RM restored adhesion, and f,f 0 ) RM viscoelastic adhesion of H7-29 and Csk cell lines, respectively.
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our method and demonstrate the absence of any overtraining
artifacts, we also use the approach described in the study by
Sokolov et al.[16] We use the same algorithms and the same data
set as described earlier, but with artificially randomized class
assignments (50/50%HT29 and Csk cells). If our approach lacks
artifacts of training, one should see the generating of diagnostic
algorithms with no classification power, i.e., close to 50% accu-
racy (or the AUC ROC is 0.5).

4. Experimental Results

4.1. The Analysis of AFM Images

Figure 3 shows a representative example of AFM scanning of
both types of cells. Five AFM channels and regular optical
bright-field images are shown. One can see in the optical images
the presence of individual cells and clusters of cells. In this work,

Figure 4. Gini importance index to rank the contribution of the surface parameters in the cell classification (shown as labels on the vertical axis). The
average value of the index and 1 standard deviation are shown for 300 trials. The data were obtained using 29 HT29 and 24 Csk cells.
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we did not differentiate between them, and collected approxi-
mately equal amount of data from both individual cells and
clusters.

Although one could find differences between two types of
cells, it is impossible just visually find features that are specific
to one cell line or other. To differentiate these two cell lines using
the recorded AFM images, we used the machine learning
method described in the previous section. First, each image
was reduced to 35 surface parameters. To calculate the classifi-
cation accuracy of the used classifier, the database was split for
training and verification (testing) subsets. There was no notice-
able difference in the proportion of the split at the range between
50% and 80%; see an example of the dependence of the accuracy
of classification on a particular split in Table S1, Supporting
Information. Hereafter, we use 70–30% split for the training
and verification subsets, respectively.

Figure 4 shows the result of the Gini importance index, which
ranks features (the surface parameters) by their importance in
segregation between different classes. The average value of
the Gini index and 1 standard deviation are shown. These were

calculated based on 300 random splits of the database for training
and verification subsets. Using the highest ranked parameters,
we calculate the accuracy of identification of the cell line as a
function of the number of the used parameters (Figure 5).
One can see that there is a minimum number of surface param-
eters that give the highest accuracy in each case. It makes sense
to keep the minimum number of parameters to accelerate the
computer time needed for the training. It should be noted that
the minimum number of surface parameters also improves the
classification based on the ROC curves. Figure S5, Supporting
Information, shows the histograms of the AUC ROC for the full
(N¼ 35) and reduced sets of the surface parameters. Therefore,
hereafter, we used ten highest ranked parameters for each chan-
nel and 20 for the combined channels.

Comprehensive statistical results of the classification are
shown in Table 1. In particular, the AUC ROC is shown, which
is the least assumption-dependent value. It gives the probability
of the classifier to separate classes. The table also presents the
results for the accuracy, sensitivity, specificity, and the estimation
of overtraining for each case. All results are presented for the
verification subset. The estimation of the overtraining (shown
as AUC ROC value) was conducted using precisely the same
algorithms but processed on a database with a randomly scram-
bled class assignment. The complete absence of overtraining
would result in an AUC ROC value equal to 0.5. The results
are presented for each of five AFM imaging channels: height
(h), adhesion (a), RM adhesion (RMa), RM restored adhesion
(RMra), and RM viscoelastic adhesion (RMva), and one com-
bined data (combined channels h, RMa, RMra, RMva).

Figure 6 shows the multiple ROC curves for each channel (and
the combination of four channels). A 100 random splits of the
database into the training and verification subsets were used
(the cloud of ROC curves becomes unreadable if 1000 splits
are used). The results for each individual channel as well as
the combination of the channels are presented.

4.2. The Analysis of AFM Images

Here, we present the results of measurements of physical char-
acteristics of cells, such as the effective modulus of elasticity (the
Young's modulus), and parameters of the pericellular coat,

Figure 5. The result of measurements of the accuracy of classification as a
function of the number of the used parameters. The values of the accuracy
were calculated for 1000 random splits of the database into the training
and verification subsets. The data were obtained using 29 HT29 and 24
Csk cells.

Table 1. The results of testing of the developed algorithms on verification subsets. The average and 1 standard deviation are shown for 1000 random
splits of the database into the training and verification subsets (70–30% ratio for the size of the training in the verification subsets, respectively, was used).
The data were obtained using 29 HT29 and 24 Csk cells.

Imaging channel AUC ROC Accuracy Sensitivitya) Specificitya) Estimation of overtraining
AUC/accuracyb)

Ch_h 0.64 0.60 0.56 0.60 0.45/0.46

Ch_a 0.89 0.79 0.75 0.80 0.50/0.53

Ch_RMa 0.96 0.89 0.87 0.90 0.53/0.51

Ch_RMra 0.96 0.90 0.87 0.91 0.51/0.52

Ch_RMva 0.96 0.89 0.89 0.90 0.57/0.52

Ch_Comb 0.99 0.94 0.90 0.93 0.46/0.45

a)Sensitivity and specificity are estimated at the threshold that minimizes the error of classification (both classes). b)A possible overtraining is estimated as the AUC ROC and
accuracy calculated using the same algorithm but with randomized class assignment of the data (1000 random trials).
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equilibrium size of the pericellular coat, and the effective
grafting density of the pericellular layer. Five to seven force
curves were recorded for each of 22 H29 and 16 Csk cells.
Several representative examples of the force curves are shown
in Figure S6, Supporting Information. The force curves were
processed through the brush model, and the results for the

physical characterization of cells are shown in Figure 7. The
statistical distributions of the physical parameters are
significantly different at the confidence level p> 0.03 for the
elastic modulus, p> 0.005 for the equilibrium length of
the pericellular coat, and p> 0.04 for the grafting density of the
pericellular coat layer.

Figure 6. Clouds of ROC curves calculated for 100 random splits of the data into training and verification subsets. The average ROC curve is shown with a
solid thick line. The dashed diagonal line represents no classification power. The data were obtained using 29 HT29 and 24 Csk cells.
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It should be noted that statistical significance is calculated by
considering the data obtained for all cells. To find the accuracy of
identification of the cell line by using a single cell, we use the
same classifier, and the split 70–30% for training and verification
subsets, respectively. Even combining all three physical param-
eters, we can get the accuracy of 68%, and the area and the ROC
curve of 0.73.

5. Discussion

As we mentioned in the Introduction, the AFM indentation of
cells is a traditional approach to find the difference between dif-
ferent cell lines, mainly between cancer lines. Therefore, it is
instructional to compare the described novel approach with
the traditional one. Based on the results described in the previous
section, one can see that the AFM imaging gives a substantially
more accurate classification of cells (94%, AUC ROC is 0.99)
than the use of the traditional indentation method (68%, AUC
ROC is 0.73).

It is worth noting that the traditional indentation is done on
living cells. To address this potential critique, it is worth noting
the following. For the purpose of comparison, the use of fixed
cells seems to be appropriate because cell fixation retains the ini-
tial mechanical information.[40] Furthermore, the most impor-
tant physical parameter, the size of the pericellular layer, is
comparable with the one measured on viable cells.[2,32,41]

Thus, it is conceivable to say that the size of the pericellular layer
is not seriously altered by the fixation. Finally, as we mentioned
in the Introduction, the use of living cells for the detection pur-
pose is highly unlikely to be successful because of the high vari-
ation of the physical parameters of viable cells on the conditions
of cell preparation.

Table 1, Figure 6, and Figure S5, Supporting Information
show that the accuracy of the cell classification is substantially
higher when using the RM channels. Similar to the results of
the previous work,[16] the height channel is substantially inferior
compared with the adhesion channel with respect to the classifi-
cation power. The accuracy based on the adhesion channel can
reach 79% (AUC ROC is 0.89), whereas the accuracy of all three
RM channels is 89–90% (AUC ROC is 0.96). When combining

the three RM channels and the height channel, the accuracy of
classification reaches 94% (AUC ROC is 0.99).

It should be noted that the adhesion channel (of PeakForce
tapping) was not included in the combined list of channels
because of an excessive number of artifacts, which are shown
in Figures S1–S3, Supporting Information. It should not be sur-
prising that the artifacts are present mainly in the adhesion chan-
nel. The signal that forms the image in the height channel is
recorded at the full contact of the AFM probe with the surface,
where the adhesion is recorded at the moment of pull off of the
AFM probe from the sample surface. The RM restored adhesion
is calculated based on the free oscillation of the AFM cantilever
after the pull off. The RM adhesion, however, should be quite
close to the PeakForce adhesion. The observed difference is pre-
sumably due to a number of filters used in the PeakForce tap-
ping, which may lead to some artifacts. The last RM channel,
the viscoelastic adhesion channel, is just the algebraic difference
between the values of RM adhesion and RM restored adhesion. It
is considered here because it carries a definite physical meaning;
the force difference needed to disconnect the AFM probe from
the molecules of the pericellular layer. Comparing the results
obtained for this channel with the other ones (Table 1,
Figure 5, 6, and S2, Supporting Information), one can see that
this channel brings nearly the same classification power as the
other two RM channels. Thus, one can conclude that the linear
combination of two channels does not increase the power of clas-
sification though the combination carries a separate well-defined
physical meaning.

The sensitivity and specificity are shown in Table 1 to com-
plete the statistical description of the classification method.
One can see a relation of both sensitivity and specificity for dif-
ferent channels similar to the relation between accuracies
described earlier. The estimation of the overtraining shows that
the method is indeed almost free of overtraining, and therefore,
can be considered factual.

Figure 6 and S2, Supporting Information, demonstrate the
robustness of the method. One can see clustering of the ROC
curves near the average values. The robustness is also seen in
Figure 5, in which the accuracy is plotted for different channels
of the function of the number of the top-ranking parameters used
for the classification. One can see the particular robustness of the
combined channels. Figure 5 shows the virtual independence of

Figure 7. The results of the comparison of physical parameters of H29 and Csk cells. a) the Young's module, b) the equilibrium length of the pericellular
coat, c) grafting density of the pericellular coat layer. *p< 0.05, **p< 0.005. Five to seven force curves were recorded for each of 22 H29 and 16 Csk cells.
Each point represents the average values per cell.
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the number of the parameters starting from �10 parameters. A
very good clustering for the combined channels can be seen in
both Figure 6 and S2, Supporting Information.

Finally, let us look at the question of the biophysical reason for
the observed ability to segregate cells based on the machine
learning analysis of the AFM images. The analysis of physical
characteristics of cells, Figure 7, shows that the pericellular coat
presents a statistically significant difference between the two cell
lines considered in this work. Obviously, when imaging in air,
the pericellular coat is collapsed. Presumably, the AFM images
of the cell surface can still pick up the difference. Analyzing the
Gini importance index of the surface parameters for cell separa-
tion, one can also obtain a clue about the nature of the observed
difference. The most informative graph of the Gini importance
indexes is the one plotted for the combined channel because it
analyzes the surface parameters from all channels of interest.
One can see that the top-ranked channels are Sds and Sfd param-
eters. Sds characterizes the “number of summits” per unit area of
the sample, while the Sfd is the fractal dimension of the surface.
Indeed, the analysis shows that Sds parameter is about 10%
higher for H29 cells. However, it is definitely not sufficient to
classify cells. For example, Figure 5 shows that one needs to com-
bine more than ten surface parameters to reach a high accuracy.
It is interesting that the fractal dimension was a strong classify-
ing parameter for human cervical epithelial cells.[11,12,14,15]

6. Conclusion

Here, we used for the first time AFM RM channels combined
with machine learning to identify cells from two similar but
genetically modified cell lines. Using human colon cancer cell
lines, HT29 cells, and Csk shRNA-transfected HT29 cells that
exhibit different degrees of neoplastic aggressiveness, we dem-
onstrated a very high classification accuracy of 94% at the level
of a single cell. Analyzing the images recorded with the popular
PeakForce tapping, one can see that the RM channels give higher
classifying accuracy and AUC ROC: 89–90% (AUC ROC is 0.96)
versus 60–79% (AUC ROC is 0.64–0.89). The traditional AFM
indentation also shows statistically significant differences
between the cell lines. However, the accuracy of classification
of the traditional indentation method is rather modest, 68%
(AUC ROC is 0.73). By multiple random splitting the entire data-
base into testing and verification subsets, we demonstrated that
the obtained results are robust, i.e., weakly dependent on the way
of the splitting and the number of used parameters. All cited
results were obtained on the verification subsets only. We also
demonstrated the absence of overtraining of the used classifier.
To conclude, the AFM cell imaging combined with machine
learning could be used to identify cell phenotype at the single-
cell level with a rather high precision. We expect this result will
be of interest to a broad scientific community, to those who is
interested in advanced imaging and machine learning, in bioin-
formatics, and future application of AFM in medicine.

7. Experimental Section

Cells: We leveraged paired cancer cell lines with a defined genetic mod-
ulation that is biologically significant but does not lead to morphological

and histological abnormalities detectable by diffraction-limited optical
microscopy. We used human colorectal cancer cell lines, HT29 empty vec-
tor control cells, and CSK-shRNA-transfected HT29 cells. The CSK-shRNA
cells were derived from the control HT29 cells by 30–50% suppression of
the gene C-terminal src kinase (CSK) using RNAi. CSK is a tumor suppres-
sor gene. Despite similar morphology, these cell variants exhibit differen-
tial neoplastic aggressiveness. CSK-shRNA cells have increased malignant
aggressiveness including metastases and proliferation in animal models,
as previously reported elsewhere. The cells were grown on glass slides in
DMEMmedium and then fixed using Karnovsky fixative using the protocol
described in previous studies.[11,42] After fixation, the cells were washed
twice with PBS medium and studied with AFM working in force-volume
mode.[29] For cell imaging, fixed cells were washed in deionized (DI) water
overnight and freeze-dried. To do that, a small amount of water was left on
the slides, removed from DI water, and quickly frozen using a standard
freeze-dryer freezer (by Labconco) for 5 min. The glass slide with the fro-
zen sample was then placed in a freeze dryer operating in �45 �C for 1 h.

AFM: The mechanical properties of cells were studied using Dimension
3100 force microscope equipped with Nanoscope V controller (Bruker,
Inc., Santa Barbara, CA) and nPoint X,Y,Z scanner (NPXY200Z25-103
by nPoint, Inc.). Five micrometer silica AFM probes were used in this
study. The probes were prepared by utilizing tipless AFM cantilevers
(Bruker, Inc., Santa Barbara, CA, a nominal spring constant of
0.06 Nm�1; the exact spring constant was defined using thermal tuning
method before gluing the silica probe) as described, e.g., in the study by
Dokukin et al.[32] Force maps (16� 16 and 32� 32 pixels) with a vertical
ramping size of 5 μm were recorded for each cell and cell's cluster corre-
spondingly. Vertical speed in all experiments was set to 5 μm s�1, allowed
to record one pixel within 1.5 s. For an example of 16� 16 pixels, the time
of acquisition of such a map will be 16� 16 s, which is a bit more than
6min; acquisition of 32� 32 pixel image will require 26min.

The cell imaging was done by using Icon AFM equipped with
Nanoscope V controller (Bruker, Inc., Santa Barbara, CA) and RM exten-
sion (NanoScience Solutions, Inc., Arlington, VA).[43] Bruker ScanAssyst
Air cantilevers were used (nominal spring constant is 0.4 Nm�1; the exact
spring constant was defined using thermal tuning method; the radius of
curvature of the apex is�3 nm, which can be defined using tip check sam-
ples[23]). The probes were used until contaminated (can be good up to
imaging of �100 cells). The contamination was identified by an abnormal
increase in adhesion in the adhesion channel. Typically, 10� 10 μm2

images of the cell surface were recorded at 512� 512 pixel resolution.
The speed of scanning was chosen at 0.3–0.5 Hz, which is the fastest
speed to have the extracted surface parameters independent of the scan-
ning speed. Imaging of a single cell at this speed takes about 18min.

The scanning was done in room temperature with humidity not exceed-
ing 70% (identified as the limit for humidity-independent imaging[11,12]).
The sensitivity parameter of the photodetector was measured against a
clean glass surface. The spring constants of the cantilevers were found
using the thermal tuning option of Nanoscope software.

Statistical Analysis: Statistical analysis and handling of data are the
essential part of the current study, which are described in the main text
in detail. In brief, it is as follows: 1) preprocessing of data: row data were
used without preprocessing with the exception of the height channel,
which was plain fitted. The subsequent data processing is the topic of
the current study, which is described in detail in the main text. 2) Data
presentation: ranking of the surface parameters using Gini importance
index was shown using the bar graphs for the average value and 1 standard
deviation shown for 300 trials. The results of measurements of the accu-
racy of classification as a function of the number of used parameters were
shown for multiple channels as the average accuracy calculated for 1000
random splits of the database into the training and verification subsets.
The statistical results for the machine learning classifier were shown as a
table for averages for the AUC ROC and the parameters of the confusion
matrix; the width of the distribution of these parameters was presented as
a cloud of ROC curves and histograms for the AUC ROC. The comparison
of physical parameters (the Young's modulus, equilibrium length, and
grafting density of the pericellular coat) was presented on the graph show-
ing the entire distribution, Gaussian fitting, and the box graphs. 3) Sample
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size for each statistical analysis: AFM force study of physical properties of
cells in aqueous environment: five to seven force curves were recorded for
each of 22 H29 and 16 Csk cells. Machine learning analysis of dried cells:
the data were obtained using 29 HT29 and 24 Csk cells. 4) Statistical meth-
ods used to assess significant differences with sufficient details: ANOVA,
one side with the confidence interval p< 0.05 and 0.005. For evaluation of
the results of machine learning classifier, only the testing/verification sub-
sets were used. The evaluation of the efficiency of the machine learning
classifier was done using ROC curves and the confusion matrix.
5) Software used for statistical analysis: OriginPro 2019 (ANOVA) and
Python 3.1 Scikit-learn library.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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