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Abstract: We demonstrate that OCT images quantify subdiffractional tissue structure. Optical
coherence tomography (OCT) measures stratified tissue morphology with spatial resolution
limited by the temporal coherence length. Spectroscopic OCT processing, on the other hand, has
enabled nanoscale sensitive analysis, presenting an unexplored question: how does subdiffractional
information get folded into the OCT image and how does one best analyze to allow for unambiguous
quantification of ultrastructure? We first develop an FDTD simulation to model spectral domain
OCT with nanometer resolution. Using this, we validate an analytical relationship between
the sample statistics through the power spectral density (PSD) of refractive index fluctuations
and three measurable quantities (image mean, image variance, and spectral slope), and have
found that each probes different aspects of the PSD (amplitude, integral and slope, respectively).
Finally, we found that only the spectral slope, quantifying mass scaling, is monotonic with the
sample autocorrelation shape.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Spectroscopic interrogation of biological tissue can reveal valuable information on the structural
organization due to scattering [1–4] as well as the molecular composition from absorption [5–8].
Microarchitectural alterations can help quantify cellular dynamics and understand the progression
of pathology. For example, many of the early changes associated with neoplasia, eg. alterations
in cytoskeleton structure [9], remodeling of higher order chromatin [10] and stromal stiffness
[11], occur in the nanometer length scale, and thus appear histologically normal.

Quantifying ultrastructure (eg. morphology below the imaging resolution of standard light
microscopes) in-vivo, can provide vital insight for scientific discovery and potential targets for
therapeutic intervention [12]. Conventional widefield imaging techniques are limited by the
physical constraints of the Abbe diffraction limit (∼200 nm for visible light systems). While super
resolution optical techniques like Photon Localization Microscopy (PLM) [13–15] and Structured
Illumination Microscopy (SIM) [16] have allowed visualization of biological structures as small
as ∼10 nm, these techniques are most often unavailable for in-vivo imaging. Sample preparation
can include tissue excision, fixation, and staining, and these processes combined with high
irradiation necessary for imaging may alter or even destroy the native tissue structures of interest
[17,18]. Furthermore, while there are a variety of nanoscale imaging modalities, few can evade
the trade-off between resolution and penetration depth.

Optical Coherence Tomography (OCT) is an interferometric imaging technique to reconstruct
tissue morphology in 3D with up to several millimeters penetration depth and down to a micron
resolution [19]. Inverse Spectroscopic Optical Coherence Tomography (ISOCT) has been
developed to characterize the refractive index autocorrelation function (ACF) through spectral
domain analysis [20]. Under the Born approximation for which weakly scattering tissue applies,
the optical scattering spectra can suitably be described by a single power law decay along
wavelength [3,21,22]. Specifically, by measuring the power law decay of the backscattered
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spectrum, µb(k), one can quantify the distribution of mass density in tissue [22,23]. Tissues with
a high density of small scattering particles with respect to the illumination wavelength such as
mitochondria or lysosomes will exhibit Rayleigh scattering spectral decay (eg. µb ∝ k4). While
tissues with larger structures, resulting in more forward scattering behavior, leads to a decrease
in the power law measurement. Furthermore, this metric has been experimentally shown to be
sensitive to tissue structures at length scales from 35-450 nm [20], well below the conventional
optical imaging diffraction limit. This development, coined as inverse spectroscopic optical
coherence tomography, or ISOCT, enables a standard OCT device to yield high tissue penetration
with nanosensing capabilities by quantifying the backscattered spectral response.

However, this has surfaced a point of confusion: if the backscattered spectra is sensitive to
changes in ultrastructure from length scales below the diffraction limit, how is this information
obscured in the OCT image? Thus, it is not entirely understood if and how subdiffractional
information is folded into the image space and whether nanoscale sensitive descriptive metrics
can be retrieved by image-based (as opposed to spectroscopic) analyses. It is commonly assumed
that OCT images were strictly diffraction (lateral) and bandwidth (axial) limited, and any
structural information probed by frequencies below the minimum illuminated wavelength were
not resolvable. Additionally, several analyses have been developed to utilize the spectral features
(eg. spectral center of mass [24], or spectral maximum [25]) of spectroscopic OCT in order to
differentiate tissue types, ultrastructure or characterize pathology without a unified theory as to
how. Thus, there is a fundamental gap in the connection between sample statistics (e.g., its power
spectral density), and the resulting OCT image.

The goal of this work is to establish a theoretical framework to understand and quantify how
ultrastructure is embedded in the spectral response and incorporated into the OCT image. First,
we establish an FDTD based spectral OCT simulation to model the OCT image and spectral
response from a given sample. We validate this simulation by cross referencing the simulated
image and spectrum with that of experimentally measured beads. Then, using random media
samples with known statistical distributions, we show through a series of simulations that (1) the
backscattered spectral decay is indeed sensitive to structural changes to mass-density distribution
in the range of 30-300nm, despite the minimum resolvability of the image being limited by
the temporal coherence length (∼1µm). However, (2) the image mean and variance probe the
sample’s power spectral density amplitude and integral, respectively, which have non-monotonic
relationships with the mass-density distribution.

2. Methods

2.1. Experimental setup

The experimental setup can be simplified to a basic Michelson Interferometer with an open-air
source spectrum spanning 500-700nm, as shown in Fig. 1. An in-depth description of the
system is described elsewhere [26]. Each scanned volume spanned a lateral extent of 1.7mm
x 1.7mm with 512 x 512 pixels. The system was calibrated with a 1% by volume solution of
80nm polystyrene beads mixed in deionized water to ensure that the effects of spectral dependent
system roll-off were minimized.

In order to generate the OCT image, each interferogram signal was first normalized by the
reference spectra and its DC component was subtracted. Computing the Fourier transform
(FT) converts the wavenumber k-domain signal to the spatial z-domain, or image space. The
wavenumber is related to the wavelength as k = 2π/λ. Spectral analysis requires applying a short-
time Fourier transform (STFT) on the normalized interferogram. To do this, after normalization,
the input signal IN is convolved with a series of shifted Gaussian windows in the k-domain,
G(k, k0) centered at k0, which converts the k-space signal into a k0 − z dependent extraction.
With this, one can isolate specific regions in depth for which to compute the backscattered
spectra. Furthermore, integrating over z, and squaring the result yields the spectral backscattering
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Fig. 1. Schematic of benchtop spectral domain OCT system utilizing a visible light source
(VIS) coupled to single mode (SM) optical fibers, passing to a beam splitter (BS) and
galvanometric scanning mirrors (GV). In the reference arm, the beam is modulated by a
neutral density filter (ND) and dispersion compensation quartz plates (DC). Inset shows how
the media is integrated into FDTD: a perfectly matched layer (PML) pads the media border,
and the far field scattered E-field is collected within the system specific numerical aperture.

coefficient µb(k), as follows:

µb(k) ∝
|︁|︁|︁|︁∫ zf

zi

dz
∫ kf

ki

dk IN(k)G(k − k0) exp(−2ikn0z)
|︁|︁|︁|︁2 (1)

Here, n0 is the mean refractive index in the sample. The FT exponential argument leading factor
of 2 accounts for the forward and reverse paths of light. In experiments, the STFT Gaussian
filters have a full width at half max (FWHM) of 0.12µm−1, resulting in a spatial filter with mean
FWHM of 8nm. This process has been outlined in more depth in a previous publication [20].

2.2. Simulation

A simulation method to calculate the propagation of the optical electromagnetic field through an
inhomogeneous dielectric media with nanometer-level resolution was required in order to model
the nanoscale sensitivity of ISOCT. With only the illumination beam and complex refractive
index (RI) of the media specified within a three-dimensional cartesian grid, the finite-difference
time-domain (FDTD) computational solution of Maxwell’s equations [27] was employed to
obtain the wavelength-dependent electric and magnetic fields throughout the sample and its near
vicinity. To ensure numerical convergence, the FDTD voxel size was progressively reduced below
λ/20, ultimately to as fine as 5nm. The FDTD software employed, Angora, was developed in the
Backman lab over a period of 13 years [28,29]. Angora is an open-source software that embeds
FDTD and subsequent rigorous near-to-far field transformations as the physics kernel within a
highly configurable optical system that functions as a "microscope in a computer". Angora has
been validated for accurately computing the penetrating and scattered optical electromagnetic
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fields and synthesizing the microscope images of structures comprised of both nondispersive
[29] and dispersive media [30].

Thus, integrating the output of Angora into an ISOCT based simulation, we establish our
modeled system. This included illuminating the sample with an appropriate source, computing
the scattered electromagnetic near-field adjacent to the sample, collecting the vectoral field within
the system-specific exit pupil, refocusing the field through the objective lens, constructively
adding the reference, and finally analyzing the signal as consistent with OCT (image) and ISOCT
(spectral) based analysis. To allow for flexibility to account for varying system configurations,
the simulation can be decomposed into these primary components: illumination, scattering,
collection, refocusing, and processing.

2.2.1. Illumination

Although Angora is capable of modeling a variety of spatially coherent incident beams using
plane-wave decomposition, eg. Gaussian, Bessel, etc [28], the simplest and most relevant for
OCT imaging is the linearly polarized, spectrally Gaussian, plane-wave propagating in the +z
direction:

Einc(z, t, k) = E0 exp[−i(ωt − kz)]exp

[︄
−
(k − k0)

2

2σ2
k

]︄
î (2)

Here, E0 is the real amplitude of the incident electric field (E-field), ω is the angular frequency
(radians per second), k is the wavenumber, k0 is the source spectra’s center wavenumber, and σk
is its standard deviation. All simulations were illuminated with a stationary, broad-band source
(500-700nm), with a temporally Gaussian profile: center wavelength of 583nm (k0 = 10.8µm−1)
and standard deviation of 48nm (σk = 0.6µm−1).

2.2.2. Scattering

The incident beam is introduced into the simulation space, as visualized in the inset of Fig. 1. The
media, generated in three dimensions, has an upper layer of air, and is padded on its remaining
boundaries by a perfectly matched layer, eg. n0 = nmean for a continuous media sample, or
n0 = nbackground for a bead sample. This border is necessary to emulate a sample with infinite
extent by absorbing the propagating wave at the boundaries and reducing spurious boundary
reflections. The FDTD output is a vector field consisting of the complex, far-field scattering
amplitude and direction for every sampled wavelength and observation position: Es(sx, sy, k).
Here, sx and sy are the directional cosine components of the vector fields as projected onto the x
and y axis of the entrance pupil coordinate plane.

2.2.3. Collection and refocusing

Modeling the objective lens, the scattered vector field is masked by the collecting numerical
aperture (NA) and focused onto the imaging plane by applying the Debye-Wolf Integral to the
scattered field, Es [31].

Escattered(x, y, k) =
ik
2π

∬
Ωimg

Es(sx, sy, k) exp[−ik(xsx + ysy)]dΩ (3)

Here, Ωimg = dsxdsy/sz is the solid angle bounded by collection NA. The mask is applied by

limiting the collection angles to those within the region defined by
√︂

s2
x + s2

y ≤ NA. The collection
NA was chosen to be 0.1 for continuous media and 0.05 for bead simulations to best imitate the
physical OCT system.

Next, the reference field was generated to replicate a field incident to a perfectly reflective
dielectric media (mirror). This reference field was chosen to be a plane wave with a phase offset
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of 2zref . The variable zref defines the path difference between the reference and scattered fields,
and the multiple of 2 accounts for the forward and reverse paths. Its value was chosen to avoid
the complex conjugate artifact from occluding the sample image [32].

Ereference(z, t, k) = A Einc(z, t, k) exp[−i2kzref ] (4)

Here, A is the amplification of the reference with respect to the incident source. In practice,
this is dictated by a neutral density filter placed in the reference arm to ensure the reference is
sufficiently greater than the sample arm, and the cross-interference term dominates the signal. In
these simulations, A was chosen to be 100.

Finally, the focused reference and scattered fields are summed together and squared to produce
the OCT interferogram.

Itotal(x, y, k) =
ρ

2
⟨|Ereference + Escattered |

2⟩ (5)

Here ρ is the detector’s responsivity (units Amperes/Watt), and the angular brackets represent
the detector’s inherent temporal integration [32]. For simplicity, we set ρ = 2, although to
obtain absolute measurements in comparison with an OCT system, this value must be explicitly
measured.

2.2.4. Processing

The simulated interferogram was processed as done with experimental data. First, each
interferogram was normalized by the reference intensity and its DC component was subtracted.
To obtain volumetric structural images, a full FT along the axial dimension converted each
interferogram into z-space. Additionally, as described above, after normalization, STFT
processing generated the simulated spectra. This processed was repeated for every x-y position
to compute the 3D image and averaged together to accumulate the backscatttered spectra.

3. Results

3.1. Experimental validation of simulation

With the volumetric refractive index of the media defined as an input, the FDTD-ISOCT simulation
outputs a spatially dependent interferogram: I(x, y, k). After processing, the backscattered
spectrum and OCT images are computed. Naturally, validation of this simulation is required, and
polystyrene microspheres make for predictable phantoms.

Experimental data was collected to compare the images and spectra of individual beads. A
solution of 5.2µm polystyrene beads with a coefficient of variance of 4%, was diluted with
deionized water at a concentration of 0.1% to allow individual beads to be isolated using image
analysis. An area of 1.7mm x 1.7mm was scanned with 512 x 512 pixels in the lateral dimensions.
From the OCT volume, individual beads were automatically detected, and centered within an
encompassing window of dimensions 10x10x30µm. In computing the spectra, regions of the
OCT volume without beads were masked out before computing the STFT. After processing, the
median of 500 individual beads was computed to generate the image (Figs. 2(b) and 2(d)) and
spectra (Fig. 2(e)) in order to be robust to outliers, such as coalesced or damaged microspheres.

Then, a single 5.2µm polystyrene bead was simulated with a refractive index of 1.59 in a
background of water, n0 = 1.33. In the visible light range simulated, the dispersive effects of
water were ignored. The media was 400 voxels along each dimension, with a voxel length of
20nm, which was sufficiently small to ensure numerical dispersion was insignificant [27]. The
image was generated in 3D, and lateral and axial cross sections are shown in Figs. 2(a) and 2(c),
while the spectra is shown in Fig. 2(e). It is clear that the simulated image and spectra agree with
experimental results within a reasonable margin of variability.
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Fig. 2. OCT images of 5.2µm bead cross section and en-face projection from simulation
(a,c) and experiment (b,d), respectively. (e) Backscattered spectrum for 5.2µm bead is
displayed with shaded region indicating the standard deviation.

3.2. Modeling biological tissue as a continuous random media

Towards the purpose of light scattering simulations, biological tissue, albeit highly complex
in structure, can been approximated via parametric models by assuming various degrees of
simplification. Some approaches consider discrete spherical scatterers with a fractal size
distribution to emulate the fractality of tissue organization [33,34]. Using electron microscopy,
however, it has been shown that the mass-density distribution of biological samples can be more
accurately described as a continuous random media, rather than a collection of discrete particles
[2,10,35]. Rogers et al. thoroughly discussed the use of one such model, the Whitle-Matérn
(WM) model and its utility in accurately describing tissue structure [2]. Here, we use the flexible,
3-parameter WM model to parameterize the statistically isotropic spatial auto-correlation function
(ACF) of the media’s refractive index fluctuations:

Bn(r) = An

(︃
r
Ln

)︃ D−3
2

K D−3
2

(︃
r
Ln

)︃
(6)

Here, r is the separation distance, Kν{.} is the modified Bessel function of the second kind
with order ν, An is the fluctuation strength of RI variations, Ln is the characteristic length of
heterogeneity, and D is the mass scaling parameter, defining the functional form of the distribution
[36,37]. When 2<D<3, the tissue is organized as a mass fractal, for which D is related to the
fractal dimension. Although there are several interpretations for the power law scaling parameter
as it relates to the fractal dimension [38], it must first be derived from the scaling property of
fractals, for which its mass within a radius r scales with fractal dimension Df , as M(r) ∼ rDf

[39]. This is analogous to a pure power-law ACF with scaling related to the fractal dimension:
Bn(r) ∝ rDf −3 [23,40]. Although this formulation is not identical to the WM form, within the
regime of D between 2 and 3, D is a reasonable approximation for Df .

For 3<D<4, however, the correlation function takes on the form of a stretched exponential,
D = 4 yields an exponential decay and as D approaches infinity, the ACF approaches that of a
Gaussian. Also, for a fixed Ln, larger values of D imply larger length scales of tissue heterogeneity
[20].
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An was set according to Eq. (7), in order to normalize the standard deviation of RI fluctuations
to a constant value σn at the smallest resolvable spatial separation rmin [2]:

An =
σ2

n(︂
rmin
Ln

)︂ D−3
2 K D−3

2

(︂
rmin
Ln

)︂ (7)

Based on the Wiener–Khinchin theorem, the sample’s power spectral density (PSD) can then be
formulated from Eq. (6) as follows [2]:

Φ(ks) =
An L3

n Γ(
D
2 )

π3/2 2(5−D)/2 (1 + k2
s L2

n)
−D/2 (8)

Here, ks is the sampled wavenumber in the media (eg. for a purely backscattered response
ks = 2k), and Γ is the gamma function. Furthermore, if ksLn>>1 and the Born approximation
applies, as in the case of primarily forward or weakly scattering media, the backscattering
coefficient µb can be written with respect to these physical parameters [20]:

µb(k) = An 2(
D
2 +

1
2 ) π3/2

Γ(D/2)L3−D
n k4−D ∝ k4−D (9)

Thus, measuring µb(k), one can readily extract the mass scaling parameter D using a log transform
and linear regression.

3.3. Spectral length scale sensitivity

To explore the sensitivity of mass scaling D to particular length scales, we generate a continuous
random media and remove the contribution from specific length scales by applying Gaussian
filters with varying filter sizes. The RI distribution of the random media sample was computed
with the ACF defined in Eq. (6). The model parameters for this simulation were D = 2.7,
Ln = 1µm, and rmin = dx/2, which normalizes the standard deviation of fluctuations of the
numerical sample to σn = 0.03. These parameters have been shown previously to be consistent
with various types of tissue [22,41]. The media was generated with 650 pixels3 along each
dimension and voxel length dx = 20nm, thus spanning 13µm along each dimension.

Next, the media was convolved with Gaussian low pass filter (denoted as WLP) with FWHM
ranging between 20 − 100nm and with high-pass filters (WHP), ranging from 100 − 500nm.
Examples of filtered media are shown in Figs. 3(b) and (c), while their ACFs are plotted in
Figs. 5(a) and 6(a) and PSDs in Figs. 5(b) and 6(b).

The OCT images and spectra were simulated and processed as described previously. Example
B-scans are shown in Figs. 3(d)-f. We note here that although the standard deviation of RI
fluctuations is consistent for all samples, reflections from top and bottom interfaces are strongest
for low pass samples, as visible in subplot (e).

Simulated spectrum are shown in Fig. 4. The spectral shape parameter D was calculated for
each simulation and is shown next to each spectrum. Percent deviation from simulated D values
are shown in 4(c), with filter sizes that deviate from 5% indicated in yellow (∼30-300nm).

Additionally, the ACFs of the simulated images along the axial dimension were computed,
normalized by the unfiltered variance and are plotted in Figs. 5(c) and Figs. 6(c). It is clear
from these figures, that although the backscattering spectra are highly sensitive to mass-density
perturbations in these subdiffractional length scales, the simulates ACFs are not. With the
exception of the variance of the simulated images, eg. B′

n(0) as shown in the inset, the structure
of OCT images do not change appreciably as filter size changes, as evident by the similarity
between ACF shapes.
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Fig. 3. Cross sections of simulated original media (a), filtered media with a low pass
Gaussian FWHM of WLP = 100nm (b), and high pass Gaussian FWHM of WHP = 500nm
(c) are shown. After simulation, the OCT cross sections for corresponding samples are
shown in (d-f).

Fig. 4. Backscattered spectra is shown for low pass (a) and high pass (b) filtered media after
processing the spectral OCT simulation. Percent change in D for all filter sizes are shown in
(c). Here, 5% change is highlighted with grey, and the filter size regime yielding changes
greater than 5% is indicated with yellow.

Fig. 5. Sample media ACF (a) and PSD (b) for varying low pass filter sizes, with FWHM
displayed in legend. The sampled backscattered wavelengths are highlighted in the grey
region. After OCT simulation, the ACFs for corresponding simulated images are taken
along the axial dimension, normalized by the r = 0 value and are plotted together in (c). The
simulated image ACF normalization is also shown in the inset of (c) for each filter size.
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Fig. 6. Sample media ACF (a) and PSD (b) for varying high pass filter sizes, with FWHM
displayed in legend. The unfiltered media is denoted with filter size WHP∞nm . After OCT
simulation, the ACFs for corresponding simulated images are taken along the axial dimension,
normalized by the r = 0 value and are plotted together in (c). The simulated image ACF
normalization is again shown in the inset of (c).

3.4. Spatial length scale sensitivity

After establishing the spectral response to perturbations of subdiffractional length scales, we
attempt to quantify the sensitivity of image space analysis. While there are a plethora of metrics
that can be extracted from image space processing, the scope of this paper specifically analyzed
the first and second moment of the image intensity, e.g. the mean and variance. The following
derivations sought to relate the expected OCT image mean and variance to the sample statistics
through its PSD.

Incorporating the assumptions of a weakly scattering, non-absorbing media and a linearly
polarized incident beam [41,42], we can formulate the normalized backscattering spectral
intensity IN(x, y, k) using the basic interference equation:

IN(x, y, k) =
I(x, y, k)
IR(x, y, k)

− 1 = 2t01t10 ρTk Re
{︃∫ ∞

−∞

k2n1D(x, y, z)e−i2k(z−zref )dz
}︃

(10)

IN is computed by normalizing I, the measured interferogram, by the reference intensity IR. The
variables t01 and t10 are the Fresnel transmission coefficients of the forward and reverse paths
through the air-sample interface, ρ is the detector gain, and k is the wavenumber within the
sample. Whereby, following the notation in [41], n1D is equivalent to the media’s RI fluctuations,
n∆ = n(x,y,z)−n0

n0
, smoothed by the windowing functions of the numerical aperture and the source

spectra (TkNA and T2k respectively):

n1D(x, y, z) = F {TkNAT2k} ⊗ n∆(x, y, z) (11)

Thus, the sample PSD can be written as:

Φn1D (k) =
|︁|︁|︁|︁∫ ∞

−∞

n1D(x, y, z) e−ikzdz
|︁|︁|︁|︁2 (12)

Since the sample is only considered in the region of positive depth, z>0, the property of Fourier
transforms for real, causal functions will enable further simplification:

Re[Fz{n1D}] = |Fz{n1D}]|/2 (13)

Substituting the resulting PSD of the media’s fluctuations Eq. (12) and Eq. (13) into Eq. (10),
and introducing a Gaussian STFT with windowing function G(k0), we obtain the simplified
expression for the statistically averaged normalized backscattered spectrum:

ĪN(k0) = G(k0) ⊗ t01t10ρk2√︁
Φn1D (2k) (14)

Relating the DC in the spatial domain to the minimum sampled frequency kmin in Fourier domain,
and considering the STFT is not applied to image space analysis (eg. in the limit as the G(k0)
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filter width approaches ∞ ), the mean image intensity can be simplified as:

Mean{IN(x, y, z)} = 1
L ĪN(k = kmin) =

t01t10ρk2

L

√︁
Φn1D (2kmin) (15)

We introduce L to be the thickness of the sample. From Parsevel’s theorem, the expected image
variance can be represented in terms of the sample PSD as follows:

Var{IN(x, y, z)} = 1
∆k

∫ ∞

−∞

|ĪN(k) − ĪN(k)|2dk

= 2(t01t10ρk0)
2
∫

ks

Φn1D (ks)d3k − Mean{IN(x, y, z)}
(16)

Here, k0 is the center illumination wavenumber in the sample. Finally, for completeness, we
include here a relationship between the statistically averaged backscattered spectrum, shown in
Eq. (14), and the backscattered coefficient, after performing a short-time Fourier transform:

µb(k0) ∝ G2(k0) ⊗ Ī2
N(k) ∝ G2(k0) ⊗ k4

Φn1D (ks) (17)

To verify the theoretical formulation for these image space metrics, we simulate a series of
continuous random media with varying size distribution parameter D, ranging from 2.1 − 3.9.
Each volume measured 10µm along each dimension, maintained a constant standard deviation
(σn = 0.03), mean index of refraction (n0 = 1.38), several values for Ln(0.5, 1.0, and 1.5µm), and
was repeated 5 times. The OCT images were simulated and the image mean and variance were
calculated within the bounding box of the sample and are plotted in Fig. 7(a) and 7(b) with the
analytical formulations computed from Eq. (15) and Eq. (17) overlaid. Additionally, the mass
scaling D was measured after simulation using spectral fitting, and is plotted in Fig. 7(c). As
shown in Eq. (17), the log-slope is equivalent to 4 − D, from which D can be measured, and is
plotted along the y-axis.

Fig. 7. Image mean (a), image variance (b) and measured D (c) are plotted as a function of
simulated D from analytical derivations described here and FDTD simulations with standard
deviations from five repetitions as error bars.

3.5. Conclusion

In this paper, we have demonstrated the use of FDTD in the simulation of spectroscopic OCT
for the analysis of nanostructural characterization. We established a theoretical framework to
relate the sample statistics, through its power spectral density, to the backscattered spectrum and
the OCT image. This framework provides valuable insight into how ultrastructural statistical
properties of a continuous random media are encoded in the diffraction limited OCT image,
specifically the mean and variance. It was found that while the spectral slope is highly sensitive to
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length scale alterations below the diffraction limit, in the image space, these alterations manifested
in changes to the image mean and variance, albeit non-monotonically.

Since the standard deviation of RI fluctuations were normalized across all samples, the contrast
measured between samples is solely due to the differences in mass-density size distribution. We
observe from Eqs. (15 – (17)), that each metric (image mean, image variance, and D), probe
different aspects of power spectral density of the media’s refractive index fluctuations (amplitude,
integral and log-slope, respectively). Furthermore, while we utilized the Whittle–Matén model to
describe the sample’s ACF, the relationship between the PSD and the image and spectral based
metrics applies to any PSD under the Born approximation, for example a purely power law ACF:
Bn(r) ∝ rD−3.

For the WM model specifically, while the spectral slope changes linearly with mass-density
scaling parameter D (Fig. 7(c)), the relationship between image mean (Fig. 7(a)) and variance
(Fig. 7(b)) invert when D ≈ 3, and that non-monotonicity is dependent on the characteristic length
Ln. Furthermore, while we observe that image mean and variance have smaller inter-simulation
variation, the curves depend highly on Ln. We also see this inversion when applying the low-pass
filters to simulated media, as shown in the inset of Fig. 5(c). There is a particular point at which
D and Ln generate a sample for which the characteristic scattering size of the media is nearing
the wavelength of light illuminated. When Ln is reduced to sub-wavelength values, the media
appears as a collection of Rayleigh particles, and larger D is required to find that maximal point.
As Ln increases beyond the size of the wavelength, the media appears more homogeneous from
the perspective of the illuminated wavelength, and scattering is reduced. For a fixed Ln, however,
changing D also changes the average mass density size.

The spectral slope (Fig. 7(c)), on the other hand is independent of Ln, and is linear and
monotonic with size distribution D. Additionally, from this analysis, we see that within specific
regimes (eg. D< ∼ 3 or D> ∼ 3), mass scaling D is monotonic and correlated with image
intensity. For example, for D<3, we see a positive correlation between image intensity and D;
this is consistent with previous OCT measurements [43]. In past experiments, however, image
mean and variance were not found to be reliable metrics to differentiate between tissue types due
to inconsistent variations within a tissue layer [43]. Additionally, image mean is not a practical
biomarker, as it cannot be compared to samples from other systems without a reliable phantom
with known reflectance properties.

Future work will seek to improve simulation limitations for a more experimentally accurate,
and tissue specific analysis. For example, optical aberrations, noise or tissue absorption could be
considered, which all become more problematic in deeper layers of tissue. Additionally, it would
be useful to examine the effect of sample statistics for multilayered tissue structures. Despite its
limitations, we believe the incorporation of FDTD-ISOCT simulation for nanoscale resolved
simulations will be most invaluable to aid in characterization, analysis and optimization for
biological research.
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