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ABSTRACT With a growing understanding of the chromatin structure, many efforts remain focused on bridging the gap be-
tween what is suggested by population-averaged data and what is visualized for single cells. A popular approach to traversing
these scales is to fit a polymer model to Hi-C contact data. However, Hi-C is an average of millions to billions of cells, and each
cell may not contain all population-averaged contacts. Therefore, we employ a novel approach of summing individual chromo-
some trajectories—determined by our Self-Returning Random Walk model—to create populations of cells. We allow single cells
to consist of disparate structures and reproduce a variety of experimentally relevant contact maps. We show that the amount of
shared topology between cells, and their mechanism of formation, changes the population-averaged structure. Therefore, we
present a modeling technique that, with few constraints and little oversight, can be used to understand which single-cell
chromatin structures underlie population-averaged behavior.
WHY IT MATTERS In the last decade, many efforts have focused on understanding how chromatin is folded into the
nucleus. In large part, this understanding has only been achieved through the invention of novel technologies. While some
of these technologies are focused on visualizing chromatin in single cells, much of our understanding has come from
techniques which require population averaging. As it is difficult to correlate what is learned at both scales, a large thrust of
research is now focused on bridging the gap between what is suggested by population-averaged data and what is
visualized for single cells. As there are currently no experimental techniques or analyses that can do so, it is incumbent on
models, such as ours, to provide this bridge.
The last decade has witnessed a rapid transformation
in our understanding of the chromatin structure. Our
burgeoning understanding parallels previously incon-
ceivable technologies, which can be generally catego-
rized as either 1) single-cell imaging of the chromatin
structure or 2) population-averaged or bulk data of
chromatin contacts or protein accessibility. Advances
in imaging include multicolored fluorescent tagging of
chromatin, both fluorescent in situ hybridization
(FISH) (1–5) and CRISPR (6–11) based, as well as
higher-resolution electron microscopy techniques
such as ChromEMT (12). Unlike these direct visualiza-
tion techniques, sequencing-based techniques infer the
higher-order structure of chromatin based on the statis-
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tics of dissected genomic contacts collected from a
large ensemble of cells. With this approach, high-
throughput chromosome conformation capture (Hi-C)
was the first technique to describe compartments
and domains smaller than chromosome territories
(10–100 Mb), which are formed through fractal-like
(self-similar) folding of the underlying chromatin (13).
Even with these great technological advances, one of
the most significant questions that remains is how
much of the population-averaged structure (deter-
mined by Hi-C and other such methods) translates to
individual cells. This question is not easily answered,
as several studies have detailed a well-known paradox
in which loci with frequent Hi-C contacts have been
less proximal in space (measured with FISH) than
loci with less frequent Hi-C contact (14). In addition,
natural variation between cells blurs our understanding
of domain localization at the population level (15,16),
and domains currently cannot be distinguished with
single-cell Hi-C, as the contact maps are too sparse
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(17–19). As single-cell Hi-C and imaging studies are
not easily comparable to Hi-C population averages,
modeling has intervened to bridge the gap between sin-
gle-cell and population-averaged chromatin structures;
indeed, it is likely only through modeling that these
scales can be reconciled (20).

Recently, several efforts have been aimed at under-
standing how heterogeneous, single-cell structures
across a population manifest in population-averaged
experimental investigation. Elegant modeling solutions
have been aimed at understanding how different experi-
mental modalities could offer conflicting pictures of the
chromatin structure (20), integrating several datamodal-
ities to allow a convergent understanding of chromatin
from multiple viewpoints (21,22) and allowing heteroge-
neity within averaged structures (23–26). However,
despite these efforts, the question is still open for a vari-
ety of reasons. One important reason is that these
methods are supervised by experimental data, so the
structuresare inherently biased.Although this isabenefit
for reproducing experimentally relevant structures, it still
relies on assumptions about the relationship between
contact frequencies and how these population-averaged
frequencies translate to individual structures. Further-
more, the studies which investigate the role of heteroge-
neity in the chromatin structure start with the averaged
structure and then allow heterogeneity to understand to
what extent heterogeneity causes the population-aver-
aged analysis to be altered significantly. While this is in-
tegral to our understanding of the chromatin structure,
there is still a need for understanding how unbiasedly
aggregated structures might appear during population
averaging and howheterogeneitywithin these structures
affects population contact maps.

We have recently developed a single-cell, statistical
model of chromatin called the Self-Returning Random
Walk (SRRW) model, which has excellent agreement
with single-cell imaging data; the chromatin density
distribution and mass scaling of the modeled chro-
matin trajectory has excellent agreement with partial
wave spectroscopic imaging and ChromSTEM imaging
of cells both at homeostasis and while undergoing heat
shock (27). This agreement is nontrivial, as our simple
model captures the heterogeneity of the chromatin
structure, the separation of chromatin into domains,
and the fractal-like nature that are experimentally
observed and not easily reconciled at the single-cell
level (27). In brief, the SRRW models the genome by
coarse-graining 2-kb of DNA (�10 nucleosomes) into
steps of variable step sizes, which allows the steps
to represent the conformational freedom of a 10-nm
fiber at kilobase level (27). Each step size (U1)
is determined from a power-law distribution
PjumpðU1 >uÞ ¼ u�ðaþ1Þ, where u ¼ 1 restricts the small-
est step size in reduced units to be�30 nm. a is the uni-
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versal folding parameter, which not only determines
the distribution of step sizes but also which determines
the amount of stochastic, self-returning events that
occur within the chromatin trajectory and which we
introduce to capture the frequent genomic contacts.
Here, returns form loops, or branches, within the struc-
ture, although it is important to note that these loops
may be transient pairwise interactions and are not
exclusively representative of loop domains anchored
by architectural proteins. The return probability decays
with the length of the current step size (U0), also by a
power law: PreturnðU0Þ ¼ U�a

0

a
. Intrinsically, large steps

have a lower probability of returning than small steps,
and smaller a (close to 1) causes a higher return fre-
quency and therefore a higher degree of compaction
than larger a. Each SRRW “trajectory” is therefore a
sequence of jumps and returns, each of which has a
unique step size and orientation in space (orientations
are randomly generated). The overall architecture of an
SRRW trajectory is a string of random trees (linear
stretches of the chromatin with a high degree of return-
ing), which are separated from other trees by unre-
turned, long jumps called backbone segments, and
are organized in a highly nested and hierarchical
fashion, as seen in imaging studies (3,28,29). As
such, the SRRW model has suggested that single-cell
chromatin is more structured and topologically compli-
cated than previously thought, with more higher-order
genomic interactions (beyond pairwise contacts) than
other models, but which is supported by a growing
abundance of experimental evidence (28,29). As previ-
ously we performed an analysis of the impact of a on
the hierarchical structure predicted by the SRRW
model, and a ¼ 1.15 was shown to be most similar
to interphase chromatin under homeostatic conditions
(27), we will use a ¼ 1.15 for the remainder of the re-
sults in this paper unless stated otherwise.

As the SRRW model has been shown to have excel-
lent agreement with single-cell imaging studies, the
logical next step is to use the SRRW model to build a
population cell by cell or trajectory by trajectory. The
first question that must be answered when construct-
ing a population is: how many single trajectories
make up a “population”? Experimental populations
contain millions to billions of cells to increase the
map resolution (the smallest locus size such that
80% of loci have at least 1000 contacts) (30). Alterna-
tively, our SRRW model achieves a 6-kb map resolution
with only 50 conformations. Furthermore, because the
SRRW is a statistical model, there is no advantage to
simulating millions of cells, as the statistics of the con-
tact map are the same with 1000 cells as they are with
5000 cells (Fig. S1). Therefore, all population averages
herein contain 1000 “single-cell” conformations, with
which the SRRW model has statistics similar to



FIGURE 1 Constructing a population of cells from individual SRRW
trajectories. (a) A contact map for a population of 1000 individual tra-
jectories with 98% shared topology. As seen in the single “cell” con-
formations, even 2% alteration in topology can lead to many
different structures. All contact maps are shown with 100% capture
rate (top right), which displays every contact in the entire conforma-
tion. However, a 5% capture rate of contacts creates both single-
cell maps and population-averaged map that are more similar to
experimental data. (b) Workflow for creating a population from indi-
vidual SRRW trajectories. We start with a reference trajectory. For
100% topology conservation, the sequence of jumps (red blocks), re-
turns (blue blocks), and their step sizes (the lengths of the blocks) is
the same, but the angles of the steps are newly generated (written
within the blocks). Biologically, this would be the same chromatin
structure, rotated differently in space. For 0% topology conservation,
all features are newly generated for each trajectory. In this case, any
shared topology is due to random chance. For intermediate topology
conservations, we impose variation by swapping one randomly
selected jump and one randomly selected return multiple times to
reach the level of topology conservation specified. These swaps
either cause a new pairwise interaction (jump to return) or eliminate
a pairwise interaction (return to jump).
experimental data with millions of cells and a 6-kb map
resolution. We are able to achieve a 6-kb map resolu-
tion with so few cells in large part because, as a
computational method, we capture all contacts be-
tween all loci in the folded structure. Because of this,
our contact maps for both single-cell SRRW conforma-
tions and population-averaged conformations look
more structured than seen experimentally (Fig. 1 a,
upper left of contact maps). However, reducing the
capture rate such that only 5% of the contacts in the
conformation are recorded causes the contact maps
to look very similar to currently available Hi-C data
(Fig. 1 a, bottom right of contact maps). This suggests
that the experimental capture rate is not high, possibly
due to known experimental limitations, such as
sequencing mismatch or the inability to detect interac-
tions above the level of only pairwise interactions.
However, although there is mounting evidence from im-
aging-based studies that the genome is highly hierar-
chical (3,28,29), and therefore, as we predict, the
underlying structures may be much more structured
than currently hypothesized, we currently have no way
to estimate what capture rate is expected experimen-
tally. Therefore, it is incumbent upon models, such as
ours, to perform a computational investigation in order
to gain insight into what improvements might be neces-
sary in experimental technologies.

Our population averages are created by averaging the
contact maps of 1000 individual SRRW trajectories. As
described previously (27), each individual SRRW trajec-
tory is dependent on a universal folding parameter, a.
Therefore, we begin by investigating how changing a af-
fects the population-level domains folded by the SRRW
model (Fig. 2 a). These domains are flanked on either
side by a random walk boundary polymer to compare
the SRRW domain against a random walk polymer. To
fold these domains, we introduce a constraint, the
“stop” constraint, whereby we do not allow the domain
to fold backward into a previously folded stretch of chro-
matin. In this case, the stop constraint prevents the
domain from returning to the random walk boundary.
In vivo, this constraint could be imposed by architectural
proteins, such as CCCTC-binding factors (CTCF), which
demarcate the boundary of domains. This stop
constraint causes a buildup of steps at the boundary
of the domain such that the stripe feature is created,
which was previously thought to only be possible by
the attenuation of “loops in the making” at a loop
domain (Fig. 2 a, arrow). This stripe, and the domain it-
self, disappears as a is raised, indicating that large a

values cause domains to fold in a random walk-like
fashion, therefore causing the domain to be averaged
out. Herein, the remainder of the individual trajectories
which comprise our populations are folded with a ¼
1:15, which are far from random walk folding.
The second question that must be answered when

constructing a population is: howmuch variability exists
within the population? While natural variation is ex-
pected, as structure dictates function it is unlikely that
cells are completely uncorrelated. Therefore, we intro-
duce a parameter that we call the “topology conserva-
tion,” which determines the degree of correlation
between cells in a population. Here, topology means
the sequence of jumps and returns that create the struc-
ture but does not include the orientation of the steps. If
we examineapopulationwherein all cells have the same
topology (100% topology conservation), each cell will
have the same sequence of jumps, returns, and step
sizes, but the orientation (angles) of these steps would
be varied cell to cell (Fig. 1 b). Biologically, this would
correspond to a population wherein each cell has the
same sequence of domains, loops, and so forth, but
Biophysical Reports 2, 100042, March 9, 2022 3



FIGURE 2 a and topology conservation affect
population-averaged domains. (a) For single
domains (600 kb) flanked by a boundary region
folded by random walks (300 kb each),
increasing a causes the domain to approach
the behavior of the random walk boundary re-
gions. These domains are population averages
of 1000 independently generated conforma-
tions (0% topology conservation) of the same
size and a. (b) To create loop domains, we
introduce the cutoff criterion. This criterion
causes the intense bright spot that demarcates
the edge of domains. However, the cutoff crite-
rion does not form a domain. To create a loop
domain, therefore, both the stop criterion and
the cutoff criterion must be applied. (c) 100%
topology conservation between single cells
within the population causes the population-
averaged contact map to obscure the corner
bright spot (upper left). Conversely, the corner
bright spot is prevalent if there is no conserva-
tion of the inner structure of the domain be-
tween the cells within a population (lower

right). (d) Therefore, there must be some continuum for which some topology can be preserved within a population while still allowing the visu-
alization of the corner bright spot. Low topology conservation, less than 50%, allows the corner bright spot to be easily distinguished (left). With
mid-ranged topology conservation, 60–80%, the corner peak is still visible, but is less distinct from the contacts of the inner structure and may
not be distinguished by loop-calling algorithms. High topology conservation, over 90%, causes the entire domain to look highly structured and in
contact.
these structures are rotated differently in each cell due
to natural variation. Conversely, a population wherein
no cells have conserved topology (0% topology conser-
vation) would correspond to a population wherein each
cell has a newly generated sequence of jumps, returns,
step sizes, and orientations (Fig. 1 b). Biologically, this
would correspond to a chromatin structure whereby
no domains, domain boundaries, or folded structures
are the same in all cells, and any shared topology is
due to random chance. To create our populations with
intermediate topology conservation, we begin with one
reference conformation and introduce variation at
random. The variation imposed consists of swapping
one jump and one return (Fig. 1 b). Biologically, a swap
from a jump to a return would correspond to a locus
creating a new pairwise interaction (due to either loop-
ing or clustering), whereas a swap from a return to a
jump would dissolve a pairwise interaction. For
example, Fig. 1 a is a population with 98% topology con-
servation. Therefore, 2% of each individual conforma-
tion is randomly selected for variation. Sometimes,
this small variation does not lead to a large change in
structure (Fig. 1 b, “Cell” 1 and “Cell” 2), while other times
even a 2% change in conformation can lead to wide-
spread changes in the existing structures. Importantly,
this underscores the difficulty of studying variation
within populations. In Fig. 1, only 2% of the linear topol-
ogy varies cell to cell; however, the way that alterations
to the linear chain manifests into three-dimensional
structures can be largely altered.
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Naturally, this raises the question: how much topol-
ogy conservation is expected for a population of cells
in vivo? Domains should not be completely uncorre-
lated; however, natural function should cause variation
in structure from cell to cell. Therefore, experimental
populations must exist somewhere on the continuum
between 0% topology conservation (Fig. 2 c, bottom
left) and 100% topology conservation (Fig. 2 c, top
right). As we currently do not have any experimental
data to suggest where populations fall on this spec-
trum, we took the approach of determining how much
variation replicates experimental contact maps. For
this study, we examine loop domains, as they have a
clear classification criterion that the corner peak
must be at least twice as intense as the average of
the rest of the domain. We create loop domains by
imposing a new criterion that domains must begin
and end within a certain cutoff (150 nm). Interestingly,
this cutoff criterion alone does not cause the formation
of loop domains (Fig. 2 b). Whereas the bright spot that
forms at the corner of domains is prevalent due to the
cutoff criterion, the intervening contacts are not high
enough in intensity compared to the background such
that a domain would be identified with topologically
associated domain (TAD)-calling algorithms. However,
when combining the cutoff criterion with the stop crite-
rion, we find that it is possible to reproduce experimen-
tally similar loop domains, where the boundaries of
these loop domains are also folded by the SRRW algo-
rithm (Fig. 2 c and d). For these population-level loop



FIGURE 3 Mechanisms of loop and higher-or-
der structure formation. (a) Nonloop domains,
which are restricted in their returning in one
direction, have good isolation and exhibit the
stripe feature seen in Hi-C (arrow). (b) Alter-
nating loop domains with nonloop domains
shows good isolation and is different from (c)
having many consecutive loop domains. Multi-
ple consecutive loop domains is similar to the
rosette model, and the contact map created
by this rosette is similar to features seen in
Hi-C.
domains, it is necessary to have a low degree of con-
servation to distinguish the corner peak of the loop do-
mains (Fig. 2 d). Although the corner peak does not
increase in intensity as conservation is decreased,
it does increase in contrast as conservation is
decreased. Therefore, it is likely that population-aver-
aged loop domains are more dissimilar than they are
similar, with shared topology in the range of 0–50%.

Thus far, we have considered how altering the con-
straints and properties of chromatin folding changes
the manifestation of single domains on population-
averaged contact maps. It is hypothesized that do-
mains make up the majority of chromatin's higher-or-
der structure. Therefore, we now investigate how
adjacent domains manifest on population contact
maps. We begin with five adjacent domains with no
cutoff criterion and no topology conservation (Fig. 3
a). We create these domains separately, folding five
400-kb trajectories and appending each trajectory to
the last step of the previous domain. This allows us
to impose the stop constraint although, depending on
the orientation of each domain, either large or small
overlaps between the domains are possible. Note
that each domain appears to be identical. This is
because there is no topological conservation; there-
fore, the domains should have the same internal struc-
ture on average. Notably, long-range domain isolation
can be achieved in these population averages of
completely independent conformations just by intro-
ducing the stop constraint. Surprisingly, with just this
one constraint, we see good isolation between adja-
cent domains, which had no instruction to avoid over-
lap.

Next, we impose the cutoff constraint to every other
domain (Fig. 3 b). However, now we only impose that
50% of the individual conformations must meet the cut-
off constraint of 150 nm to allow for the possibility that
loop domains are not closed at all times. Experimental
data have shown that CTCF has an average residence
time of 22–38 min, while cohesin has an average resi-
dence time of 20 min (31). In addition, both cohesin
and CTCF undergo a 20–30 min search time following
detachment from chromatin. Therefore, the probability
that a loop domain is closed at any given time is roughly
50%. We fold both the nonloop domains and loop do-
mains separately and, as above, append them to the pre-
vious domain. Interestingly, isolation is not as strong
between adjacent loop and nonloop domains (Fig. 3 b)
as between adjacent nonloop domains (Fig. 3 a). This
supports the hypothesis that some domains are not
intentionally created but may be the result of the folding
of the chromatin that is in between two loop domains.
Additionally, we see a strengthening of the stripes at
the boundary of loop domains. This supports two simul-
taneous mechanisms for the experimentally observed
stripe feature. First, as seen with nonloop domains, the
stop criterion causes chromatin to accrue at the bound-
ary of domains. Second, because only 50% of loops are
closed, the other 50% are in various stages of loop for-
mation, and these “loops in the making” strengthen
the intensity of the boundary stripe.

Finally, we investigate the case of adjacent loop do-
mains (Fig. 3 c). This contact map not only displays
on-diagonal domains with strong corner peaks, but
also strong peaks between the corners of all domains.
The strength of the peaks, both at the corner of the on-
diagonal domains and between the boundaries of
these domains, off-diagonal, is dependent on the num-
ber of domains within the population that are fully
formed. With no broken loops across the population,
the corner peaks are much more prominent (Fig. S2).
While still distinguishable, these peaks are much less
prominent when we impose the cutoff distance
constraint for only 50% of the loops (Fig. 3 c). Interest-
ingly, this contact map has been observed experimen-
tally (32,33). This contact pattern was hypothesized
to indicate the presence of nested subTADs. However,
we find that this pattern is more indicative of the hy-
pothesized rosette structure (Fig. 3 c, cartoon) (34).
Here, isolation is not as strong as in the previous cases
because domains cannot be as spatially separated
while also sharing a single nexus.

Altogether, we present, as far as we know, the first
model of population-level chromatin structures that is
Biophysical Reports 2, 100042, March 9, 2022 5



created by bottom-up aggregation of single-cell struc-
tures, determined by our SRRWmodel, which has excel-
lent agreement with single-cell experimental chromatin
statistics. While other models fit polymer physics to
population-level experimental data (35–38), we mimic
how populations are formed in vivo by aggregating sin-
gle conformations that are folded 1) with the same
degree of conformational freedom as single-cell chro-
matin, unencumbered by bulky, coarse-grained mono-
mers, and 2) unsupervised by Hi-C data. This allows
us to better understand the relationship that single-
cell conformations must have with each other to
contribute to experimentally observed contact maps,
which we are able to reproduce even with this simple,
single-parameter model. An important finding of our
model is that the amount of shared topology within a
population likely is different between loop and nonloop
domains. Loop domains have architectural proteins
which maintain the domain and therefore need not
share this structure across the population. This would
not be true for domains without architectural proteins,
which would require a high degree of shared topology
to be conserved across a population. Therefore, we hy-
pothesize that although nonloop domains likely have
little shared topology, nonloop domains are likely highly
conserved.

Importantly, unlike other models, the SRRW model
does not impose specific folding mechanisms such
as loop extrusion (39–42) or phase separation
(43,44). However, our model does not exclude the pos-
sibility that these, and other, mechanisms are at play. In
fact, we believe that the trajectories folded by the
SRRW model could be manifested only by employing
a combination of nearly all folding mechanisms. For
example, loop domains necessitate loop extrusion,
whereas many tree domains and subdomains are remi-
niscent of supercoiling. Even without explicitly
imposing a mechanism, we show that chromatin can
use local elements to control long-range structure.
This asset is shared with the supercoil model: torsion
at a local locus can be propagated to a faraway
domain.

Of course, the findings presented herein are based on
the assumption that interphase chromatin is best repre-
sented by a¼ 1.15. While our previous work has demon-
strated that SRRW trajectories with a ¼ 1.15 have
excellent agreement with single-cell experimental anal-
ysis of the chromatin structure, it is still likely that a
may vary between cells or cell lines (45–48). Indeed,
the main limitation of our method is that, as our inten-
tion was to analyze how heterogeneities of single-cell
chromatin could manifest in population-averaged
maps unsupervised by Hi-C data, we currently are un-
able to compare our results against experimental Hi-C
data. This is primarily because, although our popula-
6 Biophysical Reports 2, 100042, March 9, 2022
tion-averaged SRRW contact maps are qualitatively
similar to experimental contact maps, the sparsity and
heterogeneity of single-cell Hi-C contact maps cannot
feasibly be compared to our single-cell SRRW Hi-C
maps. However, our study is not completely devoid of
experimental consideration. Our SRRW model, in partic-
ular with a ¼ 1.15, has excellent agreement with exper-
imental analysis of single-cell chromatin, both in terms
of DNA mass scaling and in terms of the distribution
of chromatin volume concentration (27). As our model
is therefore physiologically relevant on the single-cell
level, we now use these single-cell structures to deter-
mine the degree of similarity that various single-cell
chromatin structures would need to have in order to
bemanifested on population-averaged Hi-C maps. How-
ever, now that we have established this framework, in
the future we will endeavor to incorporate a data-driven
validation with population-level data.

Therefore, we demonstrate a modeling technique
that, with few constraints and little oversight, generates
heterogeneous structures and allows them to be vari-
able both within and between cells to examine popula-
tion-averaged chromatin and the way it manifests
in vivo. By forming populations cell by cell, we are
able to compare chromatin structures from population
level to single cells and back. In doing so, we find the
following: 1) The sparsity of the Hi-C interactome is
not due to a lack of structure but rather a lack of ability
to detect the structure through current methods. As
such, single-cell chromatin is likely more structured
than currently hypothesized, but this structure is aver-
aged out by population-averaged study, a conclusion
that is being supported by new technologies
(28,29,49). 2) Current experimental methods likely
have a low capture rate of chromatin contacts. 3)
Some structures are more suited to population-aver-
aged study than others, suggesting that a variety of
methods employed in tandem might be more useful
for understanding the single-cell chromatin structure
than any single method alone. Our current understand-
ing of the chromatin structure is built upon novel tech-
nologies developed specifically to further our
understanding of chromatin in vivo, but there is still
no experimental technology that could faithfully
compare the single-cell chromatin structure with bulk
data. Therefore, we hope that our insights in this paper
could inspire future efforts to develop technologies to
better understand the highly structured, single-cell
chromatin, as well as how this structure may or may
not be conserved cell to cell.
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