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Abstract

The finite-difference time-domain (FDTD) method is a widespread 
numerical tool for full-wave analysis of electromagnetic fields in 
complex media and for detailed geometries. Applications of the 
FDTD method cover a range of time and spatial scales, extending 
from subatomic to galactic lengths and from classical to quantum 
physics. Technology areas that benefit from the FDTD method 
include biomedicine — bioimaging, biophotonics, bioelectronics and 
biosensors; geophysics — remote sensing, communications, space 
weather hazards and geolocation; metamaterials — sub-wavelength 
focusing lenses, electromagnetic cloaks and continuously scanning 
leaky-wave antennas; optics — diffractive optical elements, photonic 
bandgap structures, photonic crystal waveguides and ring-resonator 
devices; plasmonics — plasmonic waveguides and antennas; and 
quantum applications — quantum devices and quantum radar. This 
Primer summarizes the main features of the FDTD method, along 
with key extensions that enable accurate solutions to be obtained for 
different research questions. Additionally, hardware considerations 
are discussed, plus examples of how to extract magnitude and phase 
data, Brillouin diagrams and scattering parameters from the output 
of an FDTD model. The Primer ends with a discussion of ongoing 
challenges and opportunities to further enhance the FDTD method 
for current and future applications.
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method continues to grow in popularity because it is robust, flexible 
and relatively easy to implement.

This Primer provides an overview of FDTD modelling capabilities 
applied to various applications across the electromagnetic spectrum. 
It concludes with an outlook on future possibilities.

Experimentation
The FDTD method solves the time-domain form of Faraday’s law 
and Ampere–Maxwell’s law to obtain the time evolution of elec-
tric and magnetic fields across a spatial grid. Originally, the FDTD 
method was proposed using the differential forms of Faraday’s and 
Ampere–Maxwell’s laws:
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in which E is the electric field, H is the magnetic field, Js represents an 
electric current density source and M is the equivalent magnetic cur-
rent density. Three primary constitutive parameters are used to 
describe the electromagnetic properties of materials: ε, electric per-
mittivity; µ, magnetic permeability and σ, conductivity. Materials and 
objects of interest are generally placed into the grid by assigning 
constitutive material parameters on the basis of the cell location.

FDTD grids are typically generated in Cartesian coordinates using 
non-collocated, staggered electric and magnetic field components, as 
shown in Fig. 1a. Central differencing is used to approximate the time 
and spatial partial derivatives in equations (1) and (2). Truncating the 
Taylor series expansions of the field components yields a second-order 
accurate scheme in both space and time.

There are numerous source options for an FDTD model. These 
include hard, soft, resistive voltage and plane wave sources. Hard 
sources have field components set at specific locations to specific time 
waveforms and are the simplest source option. However, hard sources 
are non-physical and scatter incoming electromagnetic waves. Current 
or soft sources that are implemented by assigning values to the Js term 
in Ampere–Maxwell’s law (equation (2)) are used to account for current 
flow in the model. They are useful for modelling impressed sources 
that do not perturb the underlying electromagnetic response (Green’s 
function) of the problem. Resistive voltage sources7 can simulate sources 
with prescribed impedance profiles, such as at the feeding point of an 
antenna. Plane waves from a distant source may be efficiently modelled 
using a perfectly matched total-field scattered-field formulation8. Using 
the perfectly matched total-field scattered-field formulation, the numer-
ical dispersion introduced by the FDTD grid is accounted for in the 
incident wave calculation. As a result, the addition or subtraction of 
the incident wave in the FDTD model is accurate down to machine 
precision.

Alongside an appropriate source, all FDTD models must have 
suitable boundary conditions. Candidate boundary conditions include 
perfect electric conductor (PEC); perfect magnetic conductor (PMC); 
periodic boundary conditions (PBCs); surface impedance boundary 
conditions (SIBCs); and absorbing or radiation boundary conditions. 
PEC and PMC facets reflect electromagnetic waves and are the simplest 
boundary conditions. They are only appropriate for modelling (high 
conductivity) metallic structures at or below microwave frequen-
cies (PEC) or to take advantage of certain types of symmetries in the 

Introduction
As one of the four fundamental forces of nature, electromagnetic fields 
are ubiquitous in the natural environment and modern technologies. 
The field of electromagnetics began with discoveries into static elec-
tricity and the magnetic field of the Earth and has expanded to include 
a range of scientific disciplines and engineering applications, such as 
wireless radio communications, biomedical imaging and quantum 
technologies. Fundamental to these advances was the formation of  
Maxwell’s equations in 1865 (ref. 1) as well as the development of robust 
and powerful solutions to those equations. The reason Maxwell’s equa-
tions and their solutions endure is that they are valid from subatomic to  
galactic length scales and from classical to quantum physics2.

Initial efforts focused on obtaining exact solutions to Maxwell’s 
equations for canonical geometries. During this time, the Sommerfeld 
integral, Rayleigh scattering, Mie scattering3 and the Debye model4 
were pioneered. This was followed by an era of approximate solutions4, 
including geometrical optics, asymptotic theory, the geometrical 
theory of diffraction and perturbational techniques. With the advent 
of the modern computer, numerical solutions started to appear.

Compared with exact or approximate analytical approaches, 
numerical techniques provide greater flexibility and can consider 
more complex scenarios. The early focus on the frequency domain 
meant that, initially, numerical solutions to Maxwell’s equations were 
only obtained in the frequency domain.

A robust numerical method for solving Maxwell’s equations 
was finally formulated in the time domain with the introduction of  
the finite-difference time-domain (FDTD) method in 1966 (ref. 5). The 
approach decomposes the spatial domain of interest into grid cells,  
in which each grid cell has staggered electric and magnetic field 
components, as shown for Cartesian coordinates in Fig. 1a.

The FDTD method has several advantages. It evolves in time, just 
as nature evolves over time. As a result, FDTD results can give a direct 
insight into the time evolution of electromagnetic fields. The models 
are matrix-free and may be efficiently parallelized onto supercomput-
ers in a straightforward manner. Additionally, the FDTD method treats 
impulsive and nonlinear behaviour naturally, although sources of error 
are well understood and may be bounded to certain tolerance levels. 
Finally, FDTD models do not automatically need to be reformulated 
for different problems. Instead, changes are typically only made to 
account for additional physics as needed.

Before choosing the FDTD method, it is important to note its 
disadvantages. FDTD simulations are relatively slow because the 
Courant–Friedrichs–Lewy (CFL) condition6 must be satisfied to main-
tain stability. Typically, the grid cell dimensions — x y z∆ ∆ and ∆  in 
Cartesian coordinates — are chosen to satisfy the geometrical details 
of interest and have at least 10–20 grid cells per shortest electromag-
netic wavelength for sufficient accuracy7. On the basis of these grid 
cell sizes, the time-step increment is chosen that satisfies the CFL 
condition. For cubic grid cells of dimensions x y z∆ = ∆ = ∆ = ∆ , the  
CFL condition reads t∆ ≤

c

∆

3
, in which c is the speed of light. Further-

more, the FDTD method is sensitive to the shape and size of grid cells. 
As a result, FDTD models usually have uniformly shaped grid cells 
that may cause defeaturing of certain geometries. However, there are 
techniques to model material boundaries inside a grid cell and fea-
tures smaller than a grid cell, such as thin wires. Additionally, not all 
electromagnetic field component values — especially those required 
for implementing complex materials — are directly solved for by the 
algorithm at the required locations and timepoints. This can some-
times lead to stability issues. Despite these disadvantages, the FDTD 
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problem (PEC and PMC). PBCs9,10 connect opposite edges of the grid 
to each other. This boundary condition is suitable when a structure 
is periodic — such as phased antenna arrays, photonic crystals and 
metamaterials — and to approximate a geometry that should appear to 
continue beyond the edges of the computational domain, for instance, 
when approximating the ionosphere as extending far beyond the 
FDTD grid11. SIBC avoids the need to extend a model into a material, 
which usually requires smaller grid cell sizes owing to the reduced 
electromagnetic wavelength12,13. Both frequency-independent and 
frequency-dependent SIBC formulations are available. Absorbing or 

radiation boundary conditions are suitable for open-region problems, 
in which surrounding objects may be ignored in the simulation because 
they are sufficiently far away from the FDTD grid or not of direct inter-
est. Radiation boundary conditions are used infrequently, for example, 
when absorbing boundary conditions exhibit stability issues, such as 
for magnetized plasma.

The perfectly matched layer
The main goal of any absorbing boundary condition is to minimize spu-
rious reflections along the outer boundaries of the grid. The perfectly 
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Fig. 1 | Details for common finite-difference time-domain grid arrangements. 
a, A 3D finite-difference time-domain (FDTD) (Yee) grid cell in Cartesian spatial 
coordinates. The grid cell has dimensions x y z∆ × ∆ × ∆  in space, with staggered 
electric and magnetic field components oriented in each Cartesian direction. i, j, k 
are grid cell indices for the x-direction, y-direction and z-direction, respectively. 
b, Staircasing in an FDTD model comprised of regular, square Cartesian grid 
cells arising from the grid electromagnetic components not lining up with the 
material boundary. A locally conformal FDTD algorithm is applied to one grid cell 
containing the curved object. c, A non-uniform gridding approach for an FDTD 
grid refinement applied to a thin microstrip line printed on a dielectric substrate. 
Higher resolution is needed to accurately model the fringing fields around the 

edges of the metallic strip. d, Same as part c, but with a subgrid instead of 
non-uniform gridding. e, Example of thin-wire antennas modelled in an FDTD grid. 
A monopole antenna and conical antenna on a 400 × 200 × 10-cm perfect electric 
conductor (PEC) plate. The structure is illuminated by a plane wave. The FDTD grid 
resolution is x y z∆ = ∆ = ∆ = 5 cm and the time-step increment t∆ = 0.075 ns. The 
monopole is modelled as a thin wire (diameter φ = 1 cm) parallel to the z-direction 
(120-cm long, spanning 24 cells). The conical antenna is modelled using nine 
straight thin wires (φ = 2 mm) connected to form the wire structure: one short 
vertical wire (5-cm long, spanning one grid cell) and eight oblique wires (four wires 
of 21 cells 5.11-cm long and four wires of 11 cells 4.90-cm long). Both antennas are 
connected to the PEC plate through a 50-Ω resistor.
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matched layer (PML)14,15 is the most popular absorbing boundary condi-
tion for the FDTD method owing to its overall efficiency, low reflection 
levels, robustness, relative ease of implementation and flexibility.

After the PML was originally introduced, it was reformulated as 
a complex-valued mapping applied to the spatial coordinates16–18. 
This led to the PML version most commonly used today, which uses 
transformation optics principles applied to Maxwell’s equations19. 
The coordinate mapping is fully recast as modified, permeability and 
permittivity tensors into the original, real-valued, coordinate domain. 
The form of Maxwell’s equations is preserved via an anisotropic and 
dispersive medium — or an artificial PML medium — also known as 
uniaxial PML17,20. Consequently, algorithms for implementing the FDTD 
method in anisotropic and dispersive media may be retooled for PML 
media in an FDTD model and vice versa21–23.

Complex media
Beyond simple linear materials with scalar constitutive relations, the 
FDTD method has been successfully applied to a large class of disper-
sive, anisotropic and nonlinear materials. These include dispersive, 
frequency-dependent materials, such as Drude, Lorentz, Debye and 
gyromagnetic materials, for example, magnetized ferrites and plasma. 
Two main approaches have been applied. The first approach involves 
numerical integration of the time convolution integrals. The exponential 
nature of the susceptibility functions is exploited to avoid storing the 
entire time history of the fields. In its place, recursive accumulators are 
used so that only a few past time-step field values are required in the FDTD 
update equations24,25. The second approach involves auxiliary differen-
tial equations. Here, additional differential equations, which represent 
the physics of the material, are solved simultaneously with Maxwell’s 
equations24,26. Examples include magnetized ferrites27,28 and magnetized 
plasma29. The constitutive parameters of the dispersive media should 
be obtained30,31 before the FDTD implementation. It is also possible to 
implement dispersive media using a Z-transform approach32,33.

In anisotropic media, the constitutive parameters are represented 
as tensors. Several FDTD extensions have been successfully developed 
to handle anisotropic media34–37. An important example of anisotropic 
media is the PML media18,19. In nonlinear media, the constitutive param-
eters depend on the electric or magnetic field strengths. Constitutive 
relations for a nonlinear medium are expressed in terms of nonlinear 
susceptibilities, in addition to linear susceptibilities38,39. Special cases 
of nonlinear susceptibilities include isotropic models, such as the Kerr 
model with a quadratic dependency of the permittivity on the electric 
field strength, and the cubic-quintic Kerr model with both quadratic 
and quartic dependencies24. The implementation of nonlinear media 
in FDTD is accomplished by either an iterative loop or a root-finding 
algorithm, such as Newton–Raphson’s algorithm applied within each 
time step24. These approaches may be adapted to integrate nonlinear 
lumped circuit elements — diodes, transistors and other semiconductor 
devices — into FDTD simulations34. In several multiphysics problems, 
Maxwell’s equations do not constitute a closed system and the consti-
tutive relations will not fully capture all the dynamic effects. In such 
cases, the FDTD algorithm should be integrated as a field solver, with 
the set of equations discretizing the coupled dynamics40,41. Special care 
must be taken to minimize numerical FDTD artefacts that might subtly 
affect the behaviour of the coupled dynamics42,43.

Spatial gridding
Complex geometries. Each grid cell of an FDTD model must be 
assigned material constitutive properties. It is common to use uniform 

grid cells that are rectangular or cubic, meaning that complex geom-
etries may not always be replicated, producing a staircase error. This 
may be seen in Fig. 1b, in which the material boundary does not line up 
with the grid cell edges.

To mitigate staircasing errors, locally conformal FDTD grid imple-
mentations may be used, in which the FDTD grid cells are deformed next 
to curved or sloped boundaries25,44–46. Although locally conformal FDTD 
algorithms produce more accurate results for problems with curved 
and sloped geometries, their implementation requires additional book-
keeping to handle the local geometric features. Extra care is needed to 
avoid numerical instabilities47.

For problems involving highly complex 3D structures, manually 
creating the FDTD grid according to the object shape may be costly 
and error prone. To avoid these problems, automatic grid generation 
techniques based on input computer-aided design files and computer 
graphics principles48 may be used.

Subcell models and subgridding. Many geometries contain localized 
geometric details and strong, localized fields. Consider, for example, an 
array of plasmonic nanospheres embedded in a dielectric host medium. 
Plasmonic modes may be strongly localized on the surface of the nano-
spheres, in which the geometry does not conform to a grid of rectangular 
Yee grid cells. Therefore, grid refinement is necessary to accurately 
simulate these structures and capture surface field resonances.

There are four possibilities for implementing a grid refinement. 
The first, brute-force approach involves uniformly applying the mini-
mum cell size required anywhere in the computational domain. This 
approach is simple to implement. However, it results in a large com-
putational overhead. A second option is to use non-uniform gridding, 
as shown in Fig. 1c, in which only a fraction of the cells are refined49,50.

A third option is a subcell method, in which the cell size is main-
tained, but effective material parameters are assigned to the cell to 
account for material boundaries within the cells51. These parameters 
may be scalar or tensorial52,53 and may also account for the dispersive 
properties of materials46,54,55.

Subgridding, shown in Fig. 1d, is the most advanced technique. 
Grids of different resolutions are coupled together via a set of update 
equations, independent of the regular finite differences for Max-
well’s equations56–58. These interface update equations may result in a 
late-time instability59 but consistent formulations have been presented 
to ensure that subgrids are coupled in a stable fashion60–62.

FDTD subgridding methods may be categorized on the basis 
of how they treat time-stepping, as subgrids reduce the required 
time-stepping increment. To meet this stability constraint, two meth-
ods have been developed. The first uses a uniformly reduced time step 
on the basis of the CFL condition for the densest subgrid. The second 
uses adaptive time-stepping, in which subgrids are assigned time-step 
increments according to their own CFL condition and the subgrids and  
coarse mesh are synchronized through temporal interpolations  
and extrapolations59,62.

Thin-wire models. The thin-wire formalism is an important subcell 
model that allows wires thinner than the grid cell dimensions to be 
accounted for in an FDTD model. Straight wires of arbitrary radius, 
length and orientation may be implemented63. Furthermore, wires 
may be placed anywhere in the domain, even independent of the FDTD 
grid cell features. Sources and loads may be connected to wires to form 
circuits. FDTD grid cells may be comprised of both thin wires and any 
other objects.
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The basic methodology of the thin-wire method involves solving a 
set of partial differential equations for each straight wire using the 1D 
FDTD method in parallel with conventional FDTD solution for Maxwell 
equations63,64. Each wire is discretized independently from the rest of 
the model. The chosen spatial discretization of any wire should not be 
too large to obtain accurate sampling of the current and charge distri-
bution of the wire. It also must not be too small, as the 1D solution on 
the wire is also subject to the CFL stability condition.

Figure 1e illustrates some possibilities of the thin-wire formalism 
through a canonical example that includes a two-cell thick PEC plate 
along with two thin-wire antennas in the same FDTD domain.

Cylindrical and spherical FDTD models. For problems with cylindrical 
or spherical symmetries, it is desirable to use cylindrical and spherical 
FDTD grids that are conformal to the geometries of interest. These 
grids may mitigate staircasing errors and remove the need for high grid 
resolutions or locally conformal implementations35,65. In cylindrical and 
spherical coordinates, the finite-difference approximations for the 
spatial derivatives must properly account for the changing metric fac-
tors. They also require special treatment of the coordinate singularities 
along the axis of symmetry or on the spherical poles. Cylindrical and 
spherical FDTD algorithms are routinely used for diverse applications 
such as optics66, geophysics67,68 and ionospheric propagation69,70.

Non-orthogonal and unstructured FDTD models. The FDTD method 
can be extended to non-orthogonal curvilinear grids, increasing the 
geometric flexibility beyond regular Cartesian, cylindrical and spher-
ical grids. In this case, the FDTD grids are comprised of deformed 
quasi-hexahedral cells65–68. A field representation in terms of covariant 
and contravariant field components may be used to account for grid 
cell deformation and non-orthogonality68.

Alternatively, FDTD extensions can be obtained on the basis 
of a finite-element framework. The conventional FDTD algorithm 
is equivalent to a Galerkin-type finite-element time domain (FETD) 
algorithm on a Cartesian grid using mixed face or edge basis functions 
and low-order quadrature rules71. Although this approach is suitable for 
handling arbitrarily shaped geometries, conventional FETD requires a 
linear system of equations to be solved in each time step, which is less 
efficient than the FDTD method. Nevertheless, there are advantages 
of constructing FDTD schemes on more general grids on the basis of 
finite-element principles72–74.

Unconditionally stable FDTD methods
The conventional FDTD algorithm is conditionally stable because the 
time-step increment is constrained by the CFL condition. It is possible 
to construct unconditionally stable FDTD methods on the basis of 
modifying the time-stepping algorithm used for field updates75,76. The 
Newmark-β FDTD algorithm77 and the Crank–Nicolson FDTD algorithm78 
are two popular methods. Unconditionally stable methods are particu-
larly useful for problems that require very fine grid resolutions of two or 
more orders of magnitude less than the wavelength40.

Unconditionally stable methods have drawbacks. The field values 
to be solved at any given time step depend on known past field values and  
unknown present field values at other grid points. The result is an 
implicit time update that requires solution of a sparse matrix equa-
tion at each time step to obtain the next field value. Additionally, the 
condition number of the underlying system matrix tends to grow with 
time-step size79. This leads to a slower field update for schemes that use 
iterative solvers for the sparse matrix equation.

Dimensional splitting unconditionally stable algorithms, such 
as the alternating direction implicit and the locally one-dimensional 
algorithms, involve only tridiagonal matrices and require iterative 
solvers at each time step. Alternating direction implicit-FDTD80–82 and 
locally one dimensional-FDTD83,84 introduce additional splitting errors. 
Care must be exercised when choosing the simulation parameters to 
ensure that the numerical error remains within acceptable bounds.

Parallel computing and hardware acceleration
Conventional FDTD is formally an Iterative Stencil Loops simulator 
or a time marching, finely grained, nearest neighbour algorithm. It is 
an explicit algorithm, in which new field values are computed using 
only previously computed field components. These characteristics 
make FDTD models highly parallel and well suited to various parallel 
computational hardware components, from mainstream multicore 
central processing unit (CPU) chips and graphical processing unit (GPU) 
chips85, to special-purpose hardware based on field programmable 
gate arrays. As of 2023, multicore CPUs and GPUs are the two main 
computational hardware platforms available to an FDTD developer.

Contemporary CPUs have up to 24 or 64 cores. From the per-
spective of a programmer, each core is a fully functioning processor 
that splits each core into two virtual cores, called threads. A single 
18-core CPU may run 36 threads or independent processes. For the 
FDTD method, developers may achieve effective parallelization by 
using OpenMP API with a simple parallelization pragma added in front 
of the nested loops with field updates. If more complex field updates 
are required in a small area — for example, complex materials or sub-
cell models — it is beneficial not to break the parallel loops. Instead,  
a backward time step can be performed and the field recomputed using 
updates, reflecting the local field interaction complexity.

By contrast, GPUs are massively parallel computational platforms. 
The highly parallel sections of the code are executed on the GPU device 
as kernels. A kernel executes in parallel across a set of threads, organ-
ized into thread blocks and arranged into a grid. To execute kernels, 
thread blocks are distributed across streaming multiprocessors on the 
basis of resource availability. Multiple instructions, multiple data may 
be executed across a thread processing cluster, with single instruction 
multiple data on each streaming multiprocessor.

A GPU FDTD programmer does not use loops to update fields. 
Instead, the simulation domain is divided into blocks of FDTD cells to 
be distributed across thread processors. Computing fields at the edge 
of the block requires data from neighbouring blocks at every time step.

At the time of writing, a single NVIDIA Hopper GPU has 80 GB 
of high-speed memory, and 18,176 CUDA cores, each with 2 floating 
point units. This resource enables large FDTD simulations with more 
than 3 billion grid cells, for example, a photonics problem with grid  
dimensions of 6,000 × 6,000 × 90, or an antenna problem with  
grid dimensions of 1,500 × 1,500 × 1,400. High-end PC machines can 
support multiple GPU cards. Message passing interface may be used to 
extend parallelization to multiple GPUs and machine clusters, which 
each have multiple GPUs. Most commercial FDTD codes can use a single 
GPU at minimum.

Higher-order FDTD modelling
The accuracy of the FDTD method for electrically large problems, which 
span many tens of wavelengths or more, is primarily limited by numeri-
cal or grid dispersion. This causes the phase velocity of the waves in 
the FDTD grid to exhibit spurious variations versus both frequency 
(dispersion) and propagation (anisotropy) angle.

https://www.openmp.org/resources/
https://www.open-mpi.org/
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Higher-order FDTD algorithms may be used to reduce the numeri-
cal dispersion. Conventional higher-order FDTD algorithms are 
based on extended finite-difference stencils to approximate the field 
derivatives86. This is often denoted as (n,p) FDTD, in which n and p refer 
to the order of the truncation error in time and space, respectively. 
Using this notation, the conventional second-order FDTD algorithm, 
Yee’s scheme, is (2,2) FDTD. The (2,4) FDTD algorithm strikes a good 
balance between accuracy and computational cost87.

The main limitation of higher-order schemes comes from the behav-
iour of larger spatial stencils across material interfaces, in which the higher 
order of the finite-difference approximation is not retained. Although 
approaches are available to maintain the accuracy order of higher-order 
FDTD schemes across interfaces88,89, they are characterized by a decrease 
in generality and a substantial increase in the implementation complexity.

In broadband problems, grid dispersion effects are exacerbated at 
the high end of the frequency band. The phase error may be more uni-
formly minimized across a wide frequency band by modifying the coef-
ficients of the enlarged finite-difference stencils90–92. Figure 2a provides 
a notional view of the most suitable FDTD algorithms according to 
the electrical size of the problem domain and chosen grid resolution.

Scientific machine learning
Deep learning methods have been developed as alternatives to conven-
tional numerical techniques for solving partial differential equations 
and inverse problems. Developments include physics-informed 
neural networks (PINNs)93,94, the deep Galerkin method95 and deep 
Ritz method96. These methods do not explicitly use any spatial or tem-
poral discretization. As a result, they are not subject to the numerical 
dispersion and stability constraints of the FDTD method. Instead, the 
PINN-based solution of Maxwell’s equations relies on minimization of 
a loss function that represents how well the generated data satisfy the 
equation, along with its initial and boundary conditions.

In ref. 97, a fully connected artificial neural network, with a loss 
function evaluated by automatic differentiation, was used to simulate 

wave propagation in inhomogeneous and nonlinear media, replicat-
ing the FDTD solution with excellent accuracy. Alternatively, the loss 
function may be evaluated on an FDTD grid using finite differences to 
approximate the derivatives. This approach was followed by ref. 98 for 
coupled electromagnetic-thermal simulations.

A supervised strategy, using a convolutional neural network (CNN) 
and a long short-term memory (LSTM) network trained with FDTD data, 
was used in ref. 99 to rapidly extract the scattering parameters of vari-
ous planar microwave structures. The CNN processed the geometry of 
the simulated structure, whereas the LSTM processed the scattering 
parameters computed by a coarse-mesh FDTD simulation. The hybrid 
CNN–LSTM network rapidly and accurately computed the scattering 
parameters of new structures not previously seen by the networks, in a 
fraction of the simulated time needed for a dense grid FDTD simulation. 
A flowchart of this approach is shown in Fig. 2c.

The current state of the art still requires significant computa-
tional resources for off-line training of neural network models. This 
is achieved either by using ground-truth FDTD data99 or via the PINN 
approach of minimizing a cost function on the basis of the equations 
to be solved97,98. Such models are efficient surrogates of FDTD in sce-
narios that need repetitive simulations, for instance, design optimiza-
tion, uncertainty quantification and yield analysis. They should not 
be seen as replacements of FDTD models or standalone simulators.

Results
The electromagnetic fields predicted in space and time by FDTD models 
are ideal for generating animations of the field behaviour. When dealing 
with large or long models running on supercomputers, parallel input 
and output — such as HDF5100 — is highly beneficial to save the desired 
output data. When sampling a field component in space, the field values 
are averages over the full dimensions of a grid cell, even though they are  
typically drawn (as in Fig. 1a) or stored (in computer memory) in a manner  
that implies that the field components are located at just one specific 
position in space.

When the spectrum of a field component is desired, a post-run 
discrete Fourier transform (DFT) may be applied to the data. For simula-
tions involving a large number of time steps, an on-the-fly DFT may be 
performed within the time-stepping loop7. To avoid any artificial high 
frequency components, the DFT should be performed either on results 
that decay to zero or until the data reach a zero-crossing.

Overall, it is good practice to validate new FDTD models or new 
algorithmic approaches against available analytical results, measure-
ment data, other computational approaches or previous FDTD models 
such as convergence studies. This helps to confirm the validity of the 
model before applying it to new problems. For example, if the grid reso-
lution is doubled and the model predicts analogous electromagnetic 
fields, it is assumed that the results have converged.

Uncertainty quantification
Many devices and systems of interest have uncertainties owing to toler-
ances in the manufacturing process, statistical fluctuations of material 
properties or changes in environmental conditions. These uncertainties 
mean that the output response of a model is also statistically variable. 
Quantifying this statistical variability is important to establish reli-
able models with realistic design margins for robust optimization. 
Uncertainty quantification addresses this challenge.

Various uncertainty quantification methods have been integrated 
with FDTD, across a range of applications. For example, the Monte Carlo 
method was used to evaluate scattering from rough surfaces in ref. 101. 

Glossary

Boundary conditions
Description of the behaviour of 
the solutions at certain points in 
space, usually along the outer 
edges of the finite-difference 
time-domain grid.

Courant–Friedrichs–Lewy 
(CFL) condition
A constraint that must be satisfied 
to achieve convergence and 
maintain numerical stability in a 
simulation.

Iterative Stencil Loops 
simulator
A numerical data processing solution 
where an array of elements is updated 
according to a fixed pattern called 
a stencil.

Maxwell’s equations
Two coupled partial differential 
equations that govern the propagation 
of electromagnetic waves.

Monte Carlo method
When applied to the finite-difference 
time-domain method, the Monte 
Carlo method involves rerunning a 
finite-difference time-domain simulation 
numerous times, often thousands or 
millions of times, to obtain a range 
of possible electric or magnetic field 
outcomes for an uncertain modelling 
scenario.

Scattering parameters
S-parameters provide a relationship 
between the input and output of an 
electrical network.
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The Monte Carlo method is simple to implement, versatile and 
non-intrusive as it is based on post-processing iterative simulations. 
However, the statistics — mean and variance — converge at a rate 
proportional to N1/ , where N is the number of simulations102. This 
limits the Monte Carlo method when applied to computationally 
large problems.

Methods that use polynomial chaos expansion (PCE) have been 
formulated as robust alternatives to Monte Carlo. PCE is based on 
expanding the output function of interest, a second-order random 
process, as orthogonal polynomials of the random input parameters103. 
A major challenge is that the number of polynomials grows with the 
number of random input parameters and polynomial order.
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Fig. 2 | Advanced finite-difference time-domain modelling approaches. 
a, Suitable finite-difference time-domain (FDTD) algorithms, depending 
on the electrical size of the problem, the FDTD grid and the chosen grid 
resolution. Spectral methods use a Fourier transform to represent spatial 
derivatives. b, Example of a stochastically deformable, generalized curvilinear 
computational grid applied at a metallic edge having a statistically variable 
geometry. c, Example flowchart for a supervised training method, in which a 

convolutional neural network (CNN) network uses the information from the 
geometry image and a long short-term memory network uses the coarse FDTD 
data. This method is used to rapidly produce the scattering parameters of planar 
microwave structures over a broad bandwidth (0–20 GHz). α, FDTD cell size; λ, 
wavelength; ADI, alternating direction implicit; L,  domain size; LOD, locally one 
dimensional. Part b adapted with permission from ref. 105, IEEE. Part c reprinted 
with permission from ref. 99, IEEE.
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The expansion coefficients in PCE may be determined with a 
non-intrusive procedure by post-processing multiple FDTD simula-
tions at a set of input parameter vectors104. Alternatively, intrusive 

implementation starts by expanding all field components in terms  
of polynomials of the random inputs and recasting the entire system of 
FDTD updates as a set of equations with respect to the field expansion 
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coefficients. In this case, a curse of dimensionality translates to more 
update equations. Intrusive PCE methods converge significantly faster 
than the non-intrusive PCE and Monte Carlo103.

Applications of intrusive PCE in FDTD are presented in refs. 105,106. 
Fabrication tolerances for the metallic parts of microwave circuits 
were taken into account105, and FDTD was formulated on a statistically 
deformable, generalized curvilinear computational mesh (Fig. 2b).

Brillouin diagrams for periodic structures
Periodic structures are common in electromagnetic problems. Fields in 
periodic structures are subject to the Floquet theorem107, which deter-
mines the relation between field components one lattice period apart. 
This relation is translated to PBCs enabling infinite periodic structures 
to be modelled via the simulation of a single unit cell, terminated in 
PBCs, as shown in Fig. 3a.

PBC algorithms for FDTD models may be divided into two groups: 
direct field methods, which use Maxwell’s equations and their standard 
FDTD implementation, and field transformation methods that intro-
duce auxiliary fields and update equations for these fields. A thorough 
review is provided in ref. 108.

FDTD models equipped with PBCs have extracted Brillouin band 
diagrams — angular frequency ω versus wavevector k — of periodic 
structures109–112; band diagrams for microwave113 and optical114 metama-
terials; scattering from periodic structures, such as frequency selective 
surfaces115,116; and analysis of infinite phased arrays117,118. As an example,  
a 2D lattice of alumina cylinders modelled as one unit cell in an FDTD grid  
is shown in Fig. 3a. Figure 3b shows the corresponding FDTD-calculated 
band diagram for the geometry of Fig. 3a.

S-parameters for microwave circuits
Scattering parameters (S-parameters) are the most common network 
parameters to describe the performance of microwave circuits and 
devices in the frequency domain. Figure 3c shows a split ring resona-
tor or strip wire structure119. In Fig. 3d, the results of an FDTD simulation 
are presented, with the structure placed in a computational domain 
terminated in PMCs in the lateral direction, PECs in the vertical direc-
tion and PMLs in the longitudinal direction. The normal incidence of 
a vertically polarized plane wave is simulated onto an infinite array  
of split ring resonator/strip wires. FDTD is used to determine the reflec-
tion coefficient S11 and transmission coefficient S21. The source is a 
modulated Gaussian pulse g(t) = exp(−(t−t0)2/Ts

2) πf tsin(2 )c , in which 
fc = 14 GHz, t0 = 3Ts and Ts = 7.5 ps to provide sufficient bandwidth to 

extract the scattering parameters in the frequency range between 0 
and 22 GHz. The incident and total electric fields are sampled on the 
probe plane in front of the unit cell. The reflected electric field is 

obtained by subtracting the total field from the incident. The total 
transmitted electric field is sampled on a similar probe plane behind 
the unit cell. The waveforms of the incident, reflected and transmitted 
fields are Fourier-transformed. Then, the Fourier transform of the 
reflected and transmitted electric fields is divided by the Fourier trans-
form of the incident field to compute S11 and S21, respectively. 
The magnitude of these coefficients is shown in Fig. 3d.

Applications
This section highlights some technological areas where the FDTD 
method has provided important results and insights.

Biomedical
FDTD is a valuable tool for simulation and optimization in bioimaging, 
biophotonics, bioelectronics and biosensors. It is versatile at modelling 
different imaging modality setups, tissue structures and physical prop-
erties. The FDTD method has been used to validate and improve opti-
cal coherence tomography (OCT), partial wave spectroscopy (PWS), 
surface-enhanced Raman scattering and MRI. For example, the FDTD 
method was used to design a silicon-based metalens for the sample 
arm of a conventional ultrahigh resolution OCT120, achieving a 30-fold 
increase in depth of focus compared with traditional objectives with 
similar resolution. By determining the underlying relationship between 
subdiffractional information in OCT images and biological sample sta-
tistics,121 the high-resolution ultrastructure of biological features can 
be investigated using a traditional diffraction-limited setup. The FDTD 
method had a significant role in validating interferometric spectros-
copy for optical statistical nanosensing, specifically the quantification 
of subdiffractional refractive-index variations in biological media, 
which led to the development of PWS microscopy122, as shown in Fig. 4a. 
PWS has been applied to measure genome structures at length scales 
below the resolution of conventional microscopy123. An FDTD-aided 
design of nanoparticle layers was used124 as a surface-enhanced Raman 
scattering substrate to enhance small molecule detection. To achieve 
simultaneous improvement in transmission efficiency and reception 
sensitivity in MRI, FDTD was used125 to design a band-pass birdcage radio 
frequency coil by combining a multichannel wireless radio frequency 
element with a high permittivity material.

Beyond bioimaging, the FDTD method has been used to study the 
direct interaction of electromagnetic fields with biological materi-
als for the safety evaluation of electromagnetic absorption126,127 and 
numerical dosimetry128, as has been shown in Fig. 4b. It has also been 
used to investigate cell behaviours and disease biomarkers related to 
retinal rods129 (Fig. 4c), cervical cells130, mitochondrial aggregation131 
and cancer cells132. The design of wearable devices133 and antennas134, 

Fig. 3 | Example approaches for obtaining results from finite-difference 
time-domain simulations. A band diagram (panels a and b) and S-parameters 
(panels c and d). a, A 2D lattice of cylinders. The periodic array is reduced to 
a single unit cell modelled in an finite-difference time-domain (FDTD) grid 
via periodic boundary conditions. Within the unit cell, a broadband source 
excitation — such a Gaussian source — excites electromagnetic waves, whose 
frequency spectra consist of peaks at the resonant frequencies corresponding 
to the wavevector k enforced by the periodic boundary conditions (PBCs). 
The maximum simulated frequency of interest is fmax = 15 GHz and the spatial 
resolution corresponds to 20 cells per wavelength in each direction at fmax. 
Twenty samples of the wavevector are taken between each edge of the  
Brillouin zone. The time step is 0.9 of the Courant–Friedrichs–Lewy limit  

and each PBC-based simulation runs for 8,192 time steps. b, Right: Brillouin 
(band) diagram for the square lattice of aluminium cylinders with period  
d = 2 cm computed by the FDTD method (crosses) and data from ref. 207  
(thick yellow lines). Left: the magnitude of the Fourier transform of the electric  
field sampled within the unit cell for two wavevectors within the irreducible 
Brillouin zone. The detected peaks are transferred to the band diagram and 
shown with green and red dots, respectively. c, The geometry of a split ring 
resonator/strip wire unit cell. d, Computational domain of the FDTD simulation, 
incident/reflected/transmitted electric field time-domain waveforms and 
scattering parameters of the split ring resonator/strip wire unit cell. PML, 
perfectly matched layer. Parts c and d reprinted with permission from 
ref. 119, IEEE.
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miniaturized biosensors36,135, nanolenses37 and microwave thermal 
ablation technologies127 has been enhanced with FDTD.

Geophysics
Vegetation, rocks, soil, snow and the ionosphere have complex con-
stitutive properties often exhibiting inhomogeneity, dispersion and 
anisotropy. Because the FDTD method is versatile at handling such 
conditions, it has been applied to geophysical problems across a range 
of frequencies and spatial scales.

FDTD applications in geophysics include simulation of ground- 
penetrating radar for the detection and localization of objects buried 
underground or geological anomalies136, borehole sensors in geophysical 
exploration137, remote sensing of ionosphere anomalies and hydrocar-
bon deposits68, hypothesized electromagnetic earthquake precursors68, 
space weather hazards138, long-range radio communications139–144, 
propagation from lightning145 and high-frequency propagation through 
the magnetized ionosphere146,147.

Figure 5a shows an efficient strategy for modelling electromag-
netic wave propagation over long propagation paths in the Earth–
ionosphere waveguide by taking advantage of the symmetry and signal 
movement. Figure 5b provides results for an 8-Mm radio path using the 
model of Fig. 5a. For some propagation geometries and ranges, a fully 

3D FDTD model may be required to accurately predict the propagation 
characteristics144.

Both 3D localized and global models of the Earth–ionosphere 
waveguide have been generated68. Figure 5c provides example electro-
magnetic propagation results for a pulse propagating globally around 
the Earth under ionospheric conditions predicted by the whole atmos-
phere community climate model with thermosphere and ionosphere 
extension.

Metamaterials
Artificial dielectrics with properties beyond those encountered in 
natural media — referred to as metamaterials — have led to the discovery 
of novel structures that support unconventional wave phenomena. 
Examples include negative refraction and inverted Doppler shift, along 
with related applications such as planar, sub-wavelength focusing 
lenses, electromagnetic cloaks and continuously scanning leaky-wave 
antennas. The transient behaviour of metamaterials may be naturally 
resolved by FDTD simulations. For example, the causal evolution of 
negative refraction was initially disputed and was verified in several 
FDTD papers, which illustrated the transient development of negatively 
refracted wavefronts at the interface between a positive-index and 
negative-index medium148–150.
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Fig. 4 | The finite-difference time-domain method applied to the biomedical 
field. a, Left: theoretical derivation of the partial wave spectroscopy imaging 
modality, supported by the finite-difference time-domain (FDTD) method. Right: 
experimental partial wave spectroscopy image (scale bar, 20 µm), revealing 
chromatin activities in live cells. b, Distribution of specific energy absorption 
(SA) on the surface (left) and inside the human head (right) of an FDTD-based 

numerical dosimetry study. c, Propagation of E| |y  inside the outer segment of the 
photoreceptor cell for four different snapshots in time calculated by the FDTD 
method. NA, numerical aperture. Part a reprinted with permission from ref. 122, 
APS, and ref. 123, AAAS. Part b reprinted with permission from ref. 128, IEEE. Part c 
reprinted with permission from ref. 129, IEEE.
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Figure 6 provides an example of FDTD simulation results for 
metamaterials. As shown in the inset of Fig. 6, a negative index lens is 
modelled consisting of a dispersive slab in between two semi-infinite 
free space regions151. Figure 6 shows the transient evolution of the 
electric field on the left and right interfaces of the lens at the design 
frequency (15.98 GHz). As predicted by the theory of the perfect 
lens152, the electric field on the exit face is larger than the electric field 

at the input owing to growing evanescent waves within the negative 
index slab.

Optics and plasmonics
The FDTD method is one of the main workhorse simulation tech-
niques in optics153. FDTD is a flexible tool for accurately modelling 
optical devices with fine geometrical details and a high degree of field 
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Fig. 5 | The finite-difference time-domain method 
applied to electromagnetic propagation in the 
Earth–ionosphere waveguide. a, An efficient axially 
symmetric (2.5-D) finite-difference time-domain (FDTD) 
computational domain model. b, Electromagnetic 
propagation results calculated by the model of part a 
over an 8-Mm radio path originating from a ground-level 
1-kW vertical transmitter operating at 30 kHz. Ground 
(ε = 15r , σ = 0.01 ohm m) is assumed from the transmitter 
to a distance of 2 Mm and seawater (ε = 80r , σ = 4ohm m) 
is assumed thereafter. The geomagnetic field is 
oriented 45° from the ground and 45° from the plane 
of propagation. The vertical electric field strength is 
plotted for typical day (β = 0.3, h’ = 72km) and night 
(β = 0.5, h’ = 87 km) exponential ionospheres over the 
whole path. For the day + night case, day is assumed 
up to 3 Mm and night beyond 4 Mm, with a continuous 
terminator from 3 Mm to 4 Mm. The reverse is assumed 
for the night + day scenario. Compared with the uniform 
ionosphere scenarios, the effect of the terminator on the 
signal is visible from about 3.5 Mm from the transmitter. 
The calculations were performed using horizontal 
and vertical grid cell dimensions of 1 km and 1.33 km, 
respectively, and time-step increment of 2.53 ms. 
c, Example of electromagnetic propagation results from 
a 3D global FDTD model69. A horizontal plane of radial 
electric field components (Er) sampled just above the 
surface of the Earth at 3.75 ms for a 300-Hz pulse 
occurring from Salt Lake City, UT, USA at 10 pm UTC. 
The 3D ionospheric conditions are defined by the 
whole atmosphere community climate model with 
thermosphere and ionosphere extension.
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confinement. Owing to this flexibility, it has been used to make new 
discoveries, such as the existence of the photonic nanojet154,155. Other 
examples include diffractive optical elements156, photonic bandgap 
structures157, grating couplers158, photonic crystal waveguides159, 
waveguide bends160 and ring-resonator devices161.

The FDTD method is also suitable for simulating plasmonic struc-
tures that explore surface plasmons — collective electron excitations —  
at metal–dielectric interfaces162–164, or for confining and manipulating 
light below the diffraction limit. For example, the FDTD method has 
been applied to the design of a plasmonic super-directive antenna165. 
As another example, Fig. 7 shows cross-sectional snapshots of a 3D 
FDTD simulation of an electric field guided at λ = 516.67 nm along a 
T-shaped chain of gold nanospheres with 25-nm diameter and 75-nm 
intercentre spacing. The FDTD mesh is terminated by a PML and is com-
posed of 448 × 544 × 256 cells with cubic grid cells of size 1.5625 nm. 
As seen in Fig. 7, the coupling of plasmon resonances between adja-
cent nanospheres produces a guided field with deep-sub-wavelength 
confinement along the chain.

Quantum FDTD
There are two fundamental classes of subatomic particles: fermions — 
electrons, protons and neutrons — which make up matter; and bosons —  
photons, gluons and bosons — which carry forces. Density-functional 
theory166–169 is an effective quantum-mechanical computational method 
for solving the approximate electronic structures of many-body, fermi-
onic systems. It is particularly useful for designing (artificial) materi-
als in solid-state physics. However, single photons, bosons, are ideal 
for carrying quantum information as they barely interact with the 
environment or with each other.

Superposition and entanglement are the two major factors in 
developing quantum information science technology. First, to cor-
rectly model and design quantum electromagnetic systems, the quan-
tization of classical electromagnetic systems is needed. The second 

quantization method is the standard quantization approach170–174. 
The main idea is to find eigenmodes of Helmholtz or vector wave 
equations, which may be viewed as electromagnetic uncoupled 
harmonic oscillators.

Finding numerical eigenmodes may be computationally expensive 
when photons carry broadband quantum information. In this case, the 
FDTD method is advantageous. In recent work175, the original second 
quantization formulation was extended to use the FDTD method. By 
applying the unitary transformation to mode-ladder operators, electric 
field operators are rewritten in terms of the convolution between a new 
propagator and coordinate-ladder operators. The new propagator 
may be found using typical FDTD simulations. Once the new propaga-
tor is found, the expectation value of arbitrary observables — such 
as coincidence count — with respect to an initial quantum state are 
found. Note that initial quantum states are solutions to the quantum 
state equation or Schrödinger equation, describing the initial state 
of a system170,171,174–177. The Hamiltonian is time-independent in this 
system. See, for example, ref. 175, which provides a 1D FDTD solution 
for the new propagator.

Figure 8 depicts simulation results of the Hong–Ou–Mandel 
(HOM) effect, a well-known quantum physics phenomenon to meas-
ure the indistinguishability of two input photons. If the photons are 
indistinguishable, the destructive interference between them in a 
50/50 beam splitter produces a bunching effect, causing the output 
photons to be measured at the same output port randomly. The degree 
of indistinguishability is often quantified using the second-order cor-
relation function or normalized coincidence of two photodetections 
at both output ports, represented by g (2), which encodes the intensity 
fluctuations. A value of g(2) below 0.5 indicates the quantum nature of 
electromagnetic fields. The HOM effect has been successfully modelled 
using the numerical mode decomposition framework175. The aim is 
to achieve the same HOM effect using the quantum FDTD scheme. 
As shown in Fig. 8, both results are in strong agreement, showing the 
validity of the quantum FDTD method.

Multiphysics modelling
The FDTD method has been coupled to several other solvers to model 
multiphysics phenomena. For example, electromagnetic–thermal 
coupling was shown in ref. 178, in which the FDTD method was used to 
determine the steady-state field distribution on the conducting parts 
of a microelectromechanical switch. Additionally, FDTD algorithms 
have been developed for the Schrödinger equation to model quantum 
phenomena and for the coupled system of Maxwell and Schrödinger 
equations for coupled electromagnetic–quantum effects. Further-
more, the FDTD method has been coupled to charge transport mod-
els to replace quasistatic models for semiconductor devices, such 
as microwave field effect transistors and power amplifiers179,180. The 
FDTD-computed electromagnetic fields are linked to hydrodynamic 
equations — current continuity, energy and momentum conserva-
tion equations — that were used to determine the charge distribution 
and current density in the device. As a last example, FDTD time step-
ping may be linked to the Simulation Program with Integrated Circuit 
Emphasis (SPICE) models of linear and nonlinear electronic circuits 
and systems181,182 to model wave–circuit interactions in structures such 
as active antennas, diode-reconfigurable microwave components and 
high-speed interconnects.

FDTD is readily coupled to ordinary and partial differen-
tial equation solvers in the time domain, facilitating modelling of 
dynamic phenomena. For example, coupled electromagnetic-circuit 
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simulations may be run by linking FDTD to SPICE-type solvers and 
using the same time step to synchronously model wave–circuit 
interactions181,182. Similarly, FDTD may be coupled to heat equation 
solvers to model the transient evolution of temperature in lossy 
media in the presence of electromagnetic fields. Such simulations 
can include temperature-dependent media, whose constitutive 
properties may be adjusted as the temperature changes, taking 
advantage of the dynamic nature of FDTD modelling. Finally, mul-
tiphysics phenomena can also involve extreme multiscale model-
ling. A recent example is the quantum–electromagnetic modelling of 
nanowires, in which an alternating-direction hybrid implicit–explicit 
FDTD technique was used to circumvent the extreme stability limit 
of conventional FDTD imposed by the presence of nanowires in the 
computational domain183.

Reproducibility and data deposition
Reproducing FDTD data using alternative implementations of the FDTD 
algorithm requires information about the geometry of the problem — 
including specification of sources, material and boundary conditions —  
and information on the parameters of the FDTD algorithm, such as 
grid cell size and time step. If all simulation parameters are aligned, 
minor discrepancies between the results, for instance, deviations in the 
computed time-domain waveforms, may be attributed to differences 
in the absorbing boundary conditions, including implementation of 
PMLs, or differences in the treatment of material boundaries using 
staircasing, subcell or other techniques.

Discrepancies between FDTD simulated and measured data may 
result from minor discrepancies between material parameters owing 
to random fluctuations of the dielectric permittivity and conductiv-
ity of materials, or discrepancies between the physical and simulated 
geometry owing to discretization, for instance, staircasing of slanted 
boundaries.

FDTD results may be reproduced by other simulation methods, 
both differential and integral equation-based. Comparison between 
such data sets must consider the different ways each method accumu-
lates numerical errors. As a result, comparisons cannot rely on aligning 
the simulation parameters of each method. However, comparisons may 
be made between the convergent results of FDTD and other methods, 
determined by varying the simulation parameters, such as cell size.

No data repository specific for FDTD results exists at present. 
However, many university and journal-based repositories provide 

results from individual research laboratories and publications. 
Furthermore, many commercial software companies offer data sets 
that may be used as inputs to FDTD models.

Limitations and optimizations
To avoid poor FDTD modelling results and unexpected outcomes, it is 
important to understand the limitations of the FDTD method. Several 
limitations — numerical dispersion, staircasing error and stability limit —  
were discussed in the preceding sections and are not considered again 
here. Rather, some additional limitations of the FDTD algorithm are 
briefly discussed, along with workarounds and optimizations.

Speeding up FDTD simulations
The maximum time-step increment for the conventional FDTD method 
is limiting. Alongside unconditionally stable FDTD methods, other 
workarounds are available to improve the performance of the FDTD 
method for long simulations. For example, in lossy media at sufficiently 
low frequencies, the conduction current may be stronger than the 
displacement current by several orders of magnitude. It is possible to 
scale up the permittivity and time-step increment t∆  while minimally 
affecting the accuracy of the results184. Other types of parameter scaling 
may also be used185.

Other options for speeding up an FDTD simulation include relax-
ing the stability limit by applying a spatial filter to the simulated 
field components to suppress unstable spatial harmonics186; apply-
ing signal-processing techniques to extrapolate the results from a 
short FDTD simulation to later time points187,188 and approximating 
the continuation of geometries via PBCs. The final approach was used 
to simulate high-frequency electromagnetic propagation through 
the ionosphere189.

Additive errors from numerical dispersion
In addition to phase error, numerical dispersion effects may also intro-
duce additive errors into FDTD-calculated data. Numerical dispersion 
effects establish a dependence of the numerical wave impedance on the 
FDTD grid cell size. This dependence causes an impedance mismatch 
at the subgridding interfaces where the cell size abruptly changes. 
Such impedance mismatches produce spurious reflections, which 
are additive errors. The application of spatial filters to the modified 
FDTD update equations at the subgridding interfaces may mitigate 
additive errors190.
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Fig. 7 | The finite-difference time-domain method 
applied to plasmonics. a, A diagram of a T-junction 
chain of gold nanospheres. b,c, Finite-difference 
time-domain cross-sectional snapshots of the 
amplitude of the electric field components Ex 
(panel b) and Ey (panel c) along the T-junction chain 
of gold nanospheres. The chain is excited by an 
x-oriented dipole to the left (indicated by the arrow), 
with wavelength λ = 516.67 nm. The nanospheres 
have 25-nm diameter and 75-nm intercentre 
spacing. The gold permittivity is represented by a 
Drude model with a relaxation time τ = 4 fs and bulk 
plasmon frequency ω = 6.79 × 1015 rad s−1. Coupling 
of the plasmon resonances between adjacent 
nanospheres produces the guided field propagation 
with deep-sub-wavelength confinement.
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Source implementation artefacts
FDTD is a charge-conserving algorithm. As a result, current source 
distributions must either be divergence-free or have no direct cur-
rent offset to avoid charge deposition on the FDTD grid nodes. Such 
node-deposited charges are stationary and equivalent to infinitely 
massive-charged particles that produce spurious static fields191.

A sudden initiation of a source at t = 0 may lead to the excitation of 
high-frequency field transients that are poorly resolved in the FDTD 
grid that alter the results. Smoothing ramp functions may be applied 
to the early source signals to reduce such high-frequency components184.

Unconditional instabilities
Special care must be taken when implementing nontrivial modifications 
to the FDTD method, such as adding subgrids or using non-orthogonal 
FDTD algorithms, to avoid unconditional instabilities192–194. Such insta-
bilities may arise from subtle inconsistencies in the spatial discretiza-
tion. This may lead to a violation of the mathematical properties (div 
curl = 0 or curl grad = 0) or physical principles, such as positive defi-
niteness of the electromagnetic energy density or reciprocity, in the 
discrete setting. Discrete exterior calculus tools are useful for avoiding 
inconsistencies during the spatial discretization process195–197.

Outlook
This section highlights current challenges and opportunities for the 
FDTD method, as well as ongoing and future priorities and applications.

Challenges
Despite the rapid growth and widespread use of the FDTD method, chal-
lenges remain. For example, the FDTD method is limited by numerical 
dispersion and stability. Large-scale problems are generally solvable 

by the FDTD method only on high-performance computing platforms. 
Unlike integral equation methods, which connect source and observa-
tion points via Green’s functions, the FDTD method requires global 
discretization of the entire computational domain. To accelerate the 
modelling of thin sheets, including metasurfaces, stable FDTD imple-
mentations of surface impedance and generalized sheet transition 
conditions are needed. PMLs add to the computational cost of a 3D 
simulation. Boundary integral approaches destroy the matrix-free 
nature of FDTD. A challenge remains to find a thinner, but still effective, 
absorbing boundary condition while preserving the matrix-free nature 
of FDTD. Finally, subgridding approaches have been developed but 
more stable algorithms that permit larger time-stepping increments 
are needed.

Opportunities for FDTD
Although there are challenges, there are also numerous opportunities 
for the FDTD method.

Scientific machine learning. Scientific machine learning is driven by 
three fundamental questions: how can training data sets be generated 
by sampling a set of model input parameters? How should efficient 
learning structures be chosen among the many existing and emerg-
ing forms of neural networks? And what types of objectives — field 
computation, scattering parameters, optimization and uncertainty 
quantification — should be targeted by developing such models? 
Each of these questions may be considered in the context of FDTD 
modelling.

Standard PINNs use automatic differentiation to compute any 
derivatives included in their loss functions. Alternatively, decades of 
FDTD research may be applied to approximate these derivatives on 
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uniform, non-uniform or subgridded FDTD meshes. A recent study has 
shown that such an approach results in PINNs that may use time steps 
beyond the CFL constraint for the corresponding FDTD grid98. This is 
a promising direction for further research.

FDTD as a design optimization tool. The FDTD method has three 
distinct advantages as a design tool: accuracy, versatility and the ability 
to provide broadband characterization of geometries in a single simula-
tion. Computational costs may be overcome by using efficient tech-
niques to compute the output function derivatives with respect to the 
input parameters, such as the adjoint variable method198. Surrogate 
models can be developed via a reduced number of FDTD simulations199. 
Furthermore, high-performance computing resources and hardware 
acceleration can be used, as shown in a recent 3D simulation of a 

λ λ100 × 100  area metalens simulation in less than 5 min using 
hardware-accelerated FDTD200.

Quantum FDTD prospects. Evolving from scientific proof-of-principle 
experiments, quantum technologies are poised to be distributed in 
chips on the basis of nano-optics technology, photonic integrated 
circuits and microwave engineering technology201. This is a crucial 
step towards scalable quantum systems. It also necessitates an effec-
tive full-wave physics numerical framework that can simulate the time 
evolution of quantum information carried by single or entangled 
photons in a complex environment. Extending the 1D quantum FDTD 
scheme into higher-dimensional space involving a lossy environment 
will be important to understand the full physics of quantum informa-
tion propagation at the on-chip level. It will also benefit a range of other 
quantum technologies, such as quantum communications, quantum 
computing and quantum sensing.

Other novel approaches in development. Research developments 
include higher-order methods for high accuracy at coarse discretiza-
tion rates, using concepts from FETD and the discontinuous Galer-
kin time-domain method202. The stable and robust hybridization of 
FDTD with other methods — such as the method of moments, the 
finite-element method, ray tracing and the vector parabolic equation 
method — continues to attract attention.

The FDTD method registers the complete history of pulses propa-
gating through a computational domain, along with its multiple reflec-
tions from objects and discontinuities. However, the sharp edge of a 
microstrip structure may not be continuously illuminated by the initial 
and reflected pulses. Therefore, static mesh refinement is a suboptimal 
solution to the grid refinement problem. To overcome this, adaptive 
mesh refinement strategies based on the intelligent mesh regeneration 
and dynamic adaptivity during simulation time203 may be used.

Attempts have been made to hybridize FDTD with other 
frequency-domain and time-domain numerical techniques. For exam-
ple, ref. 204 hybridized FDTD with the method of moments to effi-
ciently embed thin-wire antennas in an FDTD mesh without invoking 
thin-wire or subgridding techniques. In ref. 205, FDTD was combined 
with ray tracing to solve indoor wireless propagation problems. Ray 
tracing modelled propagation over electrically large distances, whereas 
FDTD was applied to compute the interaction of wireless signals with 
walls and corners. Generally, hybrid methods follow a similar pattern 
of exploiting the versatility of FDTD, while improving its efficiency for a 
particular class of problems by using a different method. These hybrid-
izations take advantage of the fundamental connections between 
numerical techniques206.

Future priorities and applications
Priorities for FDTD research include exploiting new high-performance 
computing resources and hardware to expand FDTD to larger-scale 
problems; integrating machine-learning algorithms in FDTD computa-
tions; developing FDTD algorithms on quantum computers; using the 
FDTD method for inverse problems and design optimization by inte-
grating with other methods and topology optimizations; developing 
stable, highly-accurate space–time subgrids for extreme multiscale 
problems; and exploring multiphysics FDTD algorithms, including 
quantum, chemical and mechanical effects.

The impact of the FDTD method is likely to see continual growth 
for a diverse range of applications. This includes inverse designs and 
optimizations of meta-structures in microwaves and optics; modelling 
and optimization of time-varying metasurfaces; and analysis of wire-
less communication links, such as radiation exposure studies. Another 
area where growth is expected is in simulating biological phenomena, 
including multiphysics interactions in molecular communications, 
for example, protein folding stimulated by terahertz waves and thera-
peutic applications of electromagnetic fields. One last example is 
modelling extreme multiscale structures, including quantum effects.
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